Focus
Use linear functions and inequalities to represent and model real-world situations.

CHAPTER 3
Functions and Patterns
BIG Idea Understand the concepts of a relation and a function, and determine whether a given relation defined by a graph, a set of ordered pairs, or a symbolic expression is a function.

CHAPTER 4
Analyzing Linear Equations
BIG Idea Graph a linear equation, compute an equation’s x- and y-intercepts, and derive linear equations by using the point-slope formula.

CHAPTER 5
Solving Systems of Linear Equations
BIG Idea Solve a system of two linear equations in two variables algebraically and interpret the answer graphically.

CHAPTER 6
Solving Linear Inequalities
BIG Idea Solve absolute value inequalities, multistep problems involving linear inequalities in one variable, and solve a system of two linear inequalities in two variables.

138 Unit 2
Algebra and Sports

The Spirit of the Games The first Olympic Games featured only one event—a foot race. In 2004, the Olympic Games featured thousands of competitors in about 300 events. The 2004 summer games were held in Athens, Greece. In this project, you will explore how linear functions can be used to represent times in Olympic events.

Log on to algebra1.com to begin.
Functions and Patterns

BIG Ideas

- Understand the skills required to manipulate symbols to solve problems and simplify expressions.
- Understand the meaning of the slope and intercepts of the graphs of linear functions.

Key Vocabulary

arithmetic sequence (p. 165)
function (p. 149)
inverse (p. 145)
y-intercept (p. 156)

Real-World Link

Currency A function is a rule or a formula. You can use a function to describe real-world situations like converting between currencies. For example, in Japan, an item that costs 10,000 yen is equivalent to about 87 U.S. dollars.

Foldables Study Organizer

1. Fold each sheet of paper in half from top to bottom.

2. Cut along fold. Staple the six half-sheets together to form a booklet.

3. Cut tabs into margin. The top tab is 2 lines deep, the next tab is 6 lines deep, and so on.

4. Label each of the tabs with a lesson number. Use the last page for vocabulary.
GET READY for Chapter 3

Diagnose Readiness You have two options for checking Prerequisite Skills.

Option 2
Take the Online Readiness Quiz at algebra1.com.

Option 1
Take the Quick Check below. Refer to the Quick Review for help.

Evaluate each expression if \(a = -1, \quad b = 4, \) and \(c = -3. \) (Lesson 1-2)

1. \(a + b - c \)
2. \(2c - b \)
3. \(3a - 6b - 2c \)
4. \(6a + 8b + \frac{2}{3}c \)

5. **FOOD** Noah is buying a sandwich with 1 type of meat, 2 types of cheese, and 2 types of vegetable. Each topping costs $1.55, $0.65, and $0.85 respectively. How much will Noah spend on the sandwich?

Solve each equation for \(y. \) (Lesson 2-8)

6. \(2x + y = 1 \)
7. \(x = 8 - y \)
8. \(6x - 3y = 12 \)
9. \(2x + 3y = 9 \)
10. \(9 - \frac{1}{2}y = 4x \)
11. \(\frac{y + 5}{3} = x + 2 \)

Graph each ordered pair on a coordinate grid. (Lesson 1-9)

12. \((3, 0) \)
13. \((-2, 1) \)
14. \((-3, 3) \)
15. \((-5, 5) \)
16. \((0, 6) \)
17. \((2, -1) \)
18. **MAPS** Taylor is looking at a map and needs to go 3 blocks east and 2 blocks south from where he is standing now. If he is standing at \((0, 0)\), what will his coordinates be when he arrives at his destination?

EXAMPLE 1

Evaluate \(a + 2b + 3c \) if \(a = -1, \quad b = 4, \) and \(c = -3. \)

\[
\begin{align*}
a + 2b + 3c &= (-1) + 2(4) + 3(-3) \\
&= -1 + 8 - 9 \\
&= -2
\end{align*}
\]

EXAMPLE 2

Solve \(x - 2 = \frac{y}{3} \) for \(y. \)

\[
\begin{align*}
x - 2 &= \frac{y}{3} \\
3(x - 2) &= y \\
3x - 6 &= y
\end{align*}
\]

EXAMPLE 3

Graph \((5, -3)\) on a coordinate grid.

Start at the origin. Since the \(x\)-coordinate is 5, move 5 units to the right. Since the \(y\)-coordinate is \(-3\), move down 3 units. Draw a dot.
Algebra Lab
Modeling Relations

The observation of patterns is used in many disciplines such as science, history, economics, social studies, and mathematics. When a quantity depends on another, the pattern can be described in many ways.

ACTIVITY

Step 1 Use centimeter cubes to build a tower similar to the one shown at the right.

Step 2 Copy the table below. Record the number of layers in the tower and the number of cubes used to build it in the table.

<table>
<thead>
<tr>
<th>Layers</th>
<th>Cubes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

Step 3 Add layers to the tower. Record the number of layers and the number of cubes in each tower.

Analyze the Results
Study the data you recorded in the Activity.

1. As the number of layers in the tower increases, how does the number of cubes in the tower change?
2. If there are n layers in a tower, how many cubes are there in the tower? Explain.
3. Write the data in your table as ordered pairs (layers, cubes). Graph the ordered pairs.

Extension

4. Copy and complete the table at the right for the towers that you built. To determine the surface area, count the number of squares showing on each tower, including those on the base. (Hint: The surface area of the 1-layer tower above is 16.)

<table>
<thead>
<tr>
<th>Layers</th>
<th>Surface Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

5. When a layer is added to the tower, what is the effect on the surface area of the tower? Explain.
Main Ideas
• Represent relations as sets of ordered pairs, tables, mappings, and graphs.
• Find the inverse of a relation.

New Vocabulary
mapping
inverse

Ken Griffey, Jr.’s batting statistics for home runs and strikeouts can be represented as a set of ordered pairs. The number of home runs are the first coordinates, and the number of strikeouts are the second coordinates.

You can plot the ordered pairs on a graph to look for patterns.

Represent Relations
Recall that a relation is a set of ordered pairs. A relation can also be represented by a table, a graph, or a mapping. A mapping illustrates how each element of the domain is paired with an element in the range.

Ordered Pairs Table Graph Mapping

Ken Griffey, Jr.

<table>
<thead>
<tr>
<th>Year</th>
<th>Home Runs</th>
<th>Strikeouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>1998</td>
<td>56</td>
<td>121</td>
</tr>
<tr>
<td>1999</td>
<td>48</td>
<td>108</td>
</tr>
<tr>
<td>2000</td>
<td>40</td>
<td>117</td>
</tr>
<tr>
<td>2001</td>
<td>22</td>
<td>72</td>
</tr>
<tr>
<td>2002</td>
<td>8</td>
<td>39</td>
</tr>
<tr>
<td>2003</td>
<td>13</td>
<td>44</td>
</tr>
<tr>
<td>2004</td>
<td>20</td>
<td>67</td>
</tr>
</tbody>
</table>

Source: baseball-reference.com

EXAMPLE
Represent a Relation

a. Express the relation \{(3, 2), (-1, 2), (0, -3), (-2, -2)\} as a table, a graph, and a mapping.

Table

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>-1</td>
<td>2</td>
</tr>
<tr>
<td>0</td>
<td>-3</td>
</tr>
<tr>
<td>-2</td>
<td>-2</td>
</tr>
</tbody>
</table>

Graph

Mapping

List the \(x\)-values in set \(X\) and the \(y\)-values in set \(Y\). Draw arrows from the \(x\)-values in \(X\) to the corresponding \(y\)-values.
b. Determine the domain and range.
 The domain for this relation is \([-2, -1, 0, 3]\).
 The range is \([-3, -2, 2]\).

MONEY Leticia earns $7 for walking 1 dog, $28 for walking 4 dogs, $42 for walking 6 dogs, and $49 for walking 7 dogs.

2A. Determine the domain and range of the relation.

2B. Graph the data.
Inverse Relations The inverse of any relation is obtained by switching the coordinates in each ordered pair. The domain of a relation becomes the range of the inverse and the range of a relation becomes the domain of the inverse.

Key Concept

Inverse of a Relation

Relation Q is the inverse of relation S if and only if for every ordered pair (a, b) in S, there is an ordered pair (b, a) in Q.

<table>
<thead>
<tr>
<th>Relation</th>
<th>Inverse of Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>${(0, 2), (-5, 4)}$</td>
<td>${(2, 0), (4, -5)}$</td>
</tr>
</tbody>
</table>

Example: Inverse Relation

Express the relation shown in the mapping as a set of ordered pairs. Then write the inverse of the relation.

Relation

Notice that both 2 and 3 in the domain are paired with -4 in the range. $\{(2, -4), (3, -4), (5, -7), (6, -8)\}$

Inverse

Exchange x and y in each ordered pair to write the inverse relation. $\{(-4, 2), (-4, 3), (-7, 5), (-8, 6)\}$

The mapping of the inverse is shown at the right. Compare this to the mapping of the relation.

3. Express the relation shown in the table as a set of ordered pairs. Then write the inverse of the relation.

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-4</td>
</tr>
<tr>
<td>3</td>
<td>-7</td>
</tr>
<tr>
<td>5</td>
<td>-8</td>
</tr>
<tr>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>2</td>
</tr>
<tr>
<td>-7</td>
<td>3</td>
</tr>
<tr>
<td>-8</td>
<td>5</td>
</tr>
</tbody>
</table>

Algebra Lab

Relations and Inverses

- Graph the relation $\{(3, 4), (-2, 5), (-4, -3), (5, -6), (-1, 0), (0, 2)\}$ on grid paper using a colored pencil. Connect the points in order.
- Use a different colored pencil to graph the inverse of the relation, connecting the points in order.
- Fold the grid paper so that the positive y-axis lies on top of the positive x-axis. Hold the paper up to a light to view the points.

Analyze

1. What do you notice about the location of the points?
2. Unfold the paper. Describe the transformation of each point and its inverse.
3. What do you think are the ordered pairs that represent the points on the fold line? Describe these in terms of x and y.
4. How could you graph the inverse of a function without writing ordered pairs first?
Express each relation as a table, a graph, and a mapping. Then determine the domain and range.

1. \{((5, -2), (8, 3), (-7, 1))\}
2. \{(6, 4), (3, -3), (-1, 9), (5, -3)\}

Example 2 (p. 144)

COOKING For Exercises 3 and 4, use the table.

Recipes often have different cooking times for high altitudes because water boils at a lower temperature.

1. Determine the domain and range of the relation and then graph the data.
2. Use your graph to estimate the boiling point of water at an altitude of 7000 feet.

Example 3 (p. 145)

Express the relation shown in each table, mapping, or graph as a set of ordered pairs. Then write the inverse of the relation.

5. \[
\begin{array}{c|c}
 x & y \\
 3 & -2 \\
 -6 & 7 \\
 4 & 3 \\
 -6 & 5 \\
\end{array}
\]

6. \[
\begin{array}{c}
 2 \\
 3 \\
 4 \\
 5 \\
 6 \\
 7 \\
 8 \\
\end{array}
\]

Exercises

Express each relation as a table, a graph, and a mapping. Then determine the domain and range.

8. \{(0, 0), (6, -1), (5, 6), (4, 2)\}
9. \{(3, 8), (3, 7), (2, -9), (1, -9)\}
10. \{(4, -2), (3, 4), (1, -2), (6, 4)\}
11. \{(0, 2), (-5, 1), (0, 6), (-1, 9)\}
12. \{(3, 4), (4, 3), (2, 2), (5, -4), (-4, 5)\}
13. \{(7, 6), (3, 4), (4, 5), (-2, 6), (-3, 2)\}

ANALYZE GRAPHS For Exercises 14–17, use the graph of the average number of students per computer in U.S. public schools.

14. Name three ordered pairs from the graph.
15. Determine the domain of the relation.
16. What are the least and greatest range values?
17. What conclusions can you make from the graph of the data?
Food For Exercises 18–21, use the graph that shows the projected annual production of apples from 2007–2014.

18. Estimate the domain and range.

19. Which year is projected to have the lowest production? the highest?

20. Describe any patterns that you see.

21. What is a reasonable range value for a domain value of 2015? Explain what this ordered pair represents.

Express the relation shown in each table, mapping, or graph as a set of ordered pairs. Then write the inverse of the relation.

22. \[\begin{array}{|c|c|}
\hline
x & y \\
\hline
0 & 3 \\
-5 & 2 \\
4 & 7 \\
-8 & 2 \\
\hline
\end{array} \]

23. \[\begin{array}{|c|c|}
\hline
x & y \\
\hline
0 & 0 \\
4 & 7 \\
8 & 10.5 \\
12 & 18 \\
16 & 14.5 \\
\hline
\end{array} \]

24. \[x: \{ -8, -1, 0, 5 \} \quad y: \{ 1, 4, 6 \} \]

25. \[x: \{ -3, 6, 7, 11 \} \quad y: \{ 2, 5, -8, 4 \} \]

26. \[\begin{array}{|c|c|}
\hline
x & y \\
\hline
1 & 2 \\
2 & 5 \\
3 & 8 \\
\hline
\end{array} \]

27. \[\begin{array}{|c|c|}
\hline
x & y \\
\hline
1 & 1 \\
2 & 1 \\
3 & 1 \\
\hline
\end{array} \]

Express each relation as a set of ordered pairs and describe the domain and range. Then write the inverse of the relation.

28. \[\begin{array}{|c|c|}
\hline
\text{Number of Fish} & \text{Total Cost (}$) \\
\hline
1 & 2.50 \\
2 & 5.50 \\
5 & 10.00 \\
8 & 18.75 \\
\hline
\end{array} \]

29. \[\begin{array}{|c|c|}
\hline
\text{Perimeter (cm)} & \text{Side length (cm)} \\
\hline
32 & 0 \\
28 & 1 \\
24 & 2 \\
20 & 3 \\
16 & 4 \\
12 & 5 \\
8 & 6 \\
4 & 7 \\
0 & 8 \\
\hline
\end{array} \]

Biology For Exercises 30–33, use the fact that a person typically has about 2 pounds of muscle for each 5 pounds of body weight.

30. Make a table to show the relation between body and muscle weight for people weighing 100, 105, 110, 115, 120, 125, and 130 pounds.

31. State the domain and range and then graph the relation.

32. What are the domain and range of the inverse?

33. Graph the inverse relation.
34. **CHALLENGE** Find a counterexample to disprove the following.
 The domain of relation F contains the same elements as the range of relation G.
 The range of relation F contains the same elements as the domain of relation G.
 Therefore, relation G must be the inverse of relation F.

35. **OPEN ENDED** Describe a real-life situation that can be represented using a relation and discuss how one of the quantities in the relation depends on the other. Then give an example of such a relation in three different ways.

36. **Writing in Math** Use the information about batting statistics on page 143 to explain how relations can be used to represent baseball statistics. Include a graph of the relation of the number of Ken Griffey, Jr.’s, home runs and his strikeouts. Describe the relationship between the quantities.

37. What is the domain of the function that contains the points at (0, -3), (-2, 4), (4, -3), and (-3, 1)?
 A \{-3, -2\}
 B \{-3, 1, 4\}
 C \{-3, -2, 0, 1\}
 D \{-3, -2, 0, 4\}

38. **REVIEW** Kara deposited $2000 into a savings account that pays 1.5% interest compounded annually. If she does not deposit any more money into her account, how much will she earn in interest at the end of one year?
 F $30
 G $35
 H $300
 J $350

39. **CHEMISTRY** Jamaal has 20 milliliters of a 30% solution of nitric acid. How many milliliters of a 15% solution should he add to obtain a 25% solution of nitric acid? *(Lesson 2-9)*

Solve each equation or formula for the variable specified. *(Lesson 2-8)*

40. 3x + b = 2x + 5 for x

41. 6w − 3h = b for h

42. **HOURLY PAY** Dominique earned $9.75 per hour before her employer increased her hourly rate to $10.15 per hour. What was the percent of increase in her salary? *(Lesson 2-7)*

GET ready for the Next Lesson

PREREQUISITE SKILL Evaluate each expression. *(Lesson 1-2)*

43. \(12 ÷ 4 + 15 \cdot 3\)

44. \(12(19 − 15) − 3 \cdot 8\)

45. \((25 − 4) ÷ (2^2 − 1)\)
Identify Functions Recall that relations in which each element of the domain is paired with exactly one element of the range are called functions.

Main Ideas
- Determine whether a relation is a function.
- Find functional values.

New Vocabulary
- function
- vertical line test
- function notation
- function value

Study Tip

Look Back
To review relations and functions, see Lesson 1-9.

Representing Functions

The table shows barometric pressures and temperatures recorded by the National Climatic Data Center over a three-day period.

<table>
<thead>
<tr>
<th>Pressure (millibars)</th>
<th>1013</th>
<th>1006</th>
<th>997</th>
<th>995</th>
<th>995</th>
<th>1000</th>
<th>1006</th>
<th>1011</th>
<th>1016</th>
<th>1019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>3</td>
<td>4</td>
<td>10</td>
<td>13</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>−2</td>
<td>−6</td>
<td>−9</td>
</tr>
</tbody>
</table>

Notice that when the pressure is 995 and 1006 millibars, there is more than one value for the temperature.

EXAMPLE

Identify Functions

Determine whether each relation is a function. Explain.

1. $\{(-2, 4), (1, 5), (3, 6), (5, 8), (7, 10)\}$
EXAMPLE Equations as Functions

Determine whether \(2x - y = 6\) represents a function.

Make a table and plot points to graph the equation.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>-4</td>
<td>-2</td>
<td>0</td>
</tr>
</tbody>
</table>

Since the equation is in the form \(Ax + By = C\), the graph of the equation will be a line. Place a pencil at the left of the graph to represent a vertical line. Slowly move the pencil to the right across the graph.

For each value of \(x\), this vertical line passes through no more than one point on the graph. Thus, the graph represents a function.

2. Determine whether \(x = -2\) is a function.

Review Vocabulary

Independent/Dependent Variables
In a function, the value of the dependent variable depends on the value of the independent variable. (Lesson 1-9)

Reading Math

Function Notation The symbol \(f(x)\) is read \(f\) of \(x\). The symbol \(f(5)\) is read \(f\) of 5.

Function Values Equations that are functions can be written in a form called function notation. For example, consider \(y = 3x - 8\).

<table>
<thead>
<tr>
<th>equation</th>
<th>function notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y = 3x - 8)</td>
<td>(f(x) = 3x - 8)</td>
</tr>
</tbody>
</table>

In a function, \(x\) represents the independent quantity, or the elements of the domain and \(f(x)\) represents the dependent quantity, or the elements of the range. For example, \(f(5)\) is the element in the range that corresponds to the element 5 in the domain. We say that \(f(5)\) is the function value of \(f\) for \(x = 5\).

EXAMPLE Function Values

If \(f(x) = 2x + 5\), find each value.

a. \(f(-2)\)
\[
f(-2) = 2(-2) + 5 = -4 + 5 = 1
\]

b. \(f(1) + 4\)
\[
f(1) + 4 = [2(1) + 5] + 4 = 7 + 4 = 11
\]

3A. \(f(3)\)

3B. \(2 - f(0)\)
EXAMPLE Nonlinear Function Values

Physics The function \(h(t) = -16t^2 + 68t + 2 \) represents the height \(h(t) \) of a football in feet \(t \) seconds after it is kicked. Find each value.

a. \(h(4) \)
 \[
 h(4) = -16(4)^2 + 68(4) + 2 \\
 = -256 + 272 + 2 \\
 = 18
 \]
 Replace \(t \) with 4. Multiply. Simplify.

b. \(2[h(g)] \)
 \[
 2[h(g)] = 2[-16g^2 + 68g + 2] \\
 = 2(-16g^2 + 68g + 2) \\
 = -32g^2 + 136g + 4
 \]
 Evaluate \(h(g) \) by replacing \(t \) with \(g \). Simplify. Multiply the value of \(h(g) \) by 2.

Reading Math

Functions Other letters such as \(g \) and \(h \) can be used to represent functions. For example, \(g(x) \) is read \(g \) of \(x \) and \(h(t) \) is read \(h \) of \(t \).

Test-Taking Tip

Functions When representing functions, determine the values of the domain and range that make sense for the given situation.

Standardized Test Example

The algebraic form of a function is \(s = 9h \), where \(s \) is Barbara’s weekly salary and \(h \) is the number of hours that she works in a week. Which of the following represents the same function?

A. For every week Barbara works, she earns $9.

B. \[
\begin{array}{c|c}
 h & s \\
0 & 0 \\
2 & 18 \\
4 & 36 \\
\end{array}
\]

C. \(f(h) = 9 \)

D. [Graph showing a linear function with points at (0, 0), (1, 9), (2, 18), (3, 27), (4, 36), (5, 45) on the x-axis labeled as \(h \) and the y-axis labeled as \(s \).]

Read the Test Item

The independent variable is \(h \) and the dependent variable is \(s \).

Solve the Test Item

Choices A and C both represent a constant weekly salary of $9. This is incorrect because the salary depends on the number of hours worked.

Choice D represents \(s = \frac{1}{9}h \), which is incorrect. In choice B, the salary equals the number of hours times 9, which is correct. The answer is B.

5. Which statement represents the function that is described below?

For every minute that Beatriz walks, she walks 0.1 mile.

\(f(t) = 0.1t \)

A. \(f(t) = 0.1t \)
B. \(f(t) = t + 0.1 \)
C. \(f(t) = 0.1 - t \)
D. \(f(t) = t - 0.1 \)

Personal Tutor at algebra1.com

Lesson 3-2 Representing Functions 151
Determine whether each relation is a function.

1. \(\begin{array}{c|c}
 x & y \\
 \hline
 -1 & 7 \\
 -2 & 8 \\
 -3 & 9 \\
 -4 & \\
\end{array} \)

2. \(\begin{array}{c|c}
 x & y \\
 \hline
 -3 & 0 \\
 2 & 1 \\
 2 & 4 \\
 6 & 5 \\
\end{array} \)

3. \((-4, 1), (-1, 4), (3, -2), (-4, 5)\)

4. \(y = x + 3 \)

5.

6.

If \(f(x) = 4x - 5 \) and \(g(x) = x^2 + 1 \), find each value.

7. \(f(2) \)

8. \(f(c) \)

9. \(f(x + 5) \)

10. \(g(-1) \)

11. \(g(t) - 4 \)

12. \(g(3n) \)

13. **CELL PHONE PICTURES** The cost of sending cell phone pictures is given by \(y = 0.25x \), where \(x \) is the number of pictures that you send. Write the equation in function notation and then find \(f(5) \) and \(f(12) \). What do these values represent?

14. **STANDARDIZED TEST PRACTICE** Represent the function described in Exercise 13 in two different ways.

Exercises

Determine whether each relation is a function.

15. \(\begin{array}{c|c}
 x & y \\
 \hline
 3 & 4 \\
 5 & 0 \\
 6 & 2 \\
\end{array} \)

16. \(\begin{array}{c|c}
 x & y \\
 \hline
 1 & 4 \\
 -2 & 7 \\
 3 & 9 \\
 -4 & 6 \\
\end{array} \)

17. \(\begin{array}{c|c}
 x & y \\
 \hline
 2 & 7 \\
 4 & 9 \\
 5 & 5 \\
 8 & -1 \\
\end{array} \)

18. \(\begin{array}{c|c}
 x & y \\
 \hline
 -9 & -5 \\
 -4 & 0 \\
 3 & 6 \\
 7 & 1 \\
 6 & -5 \\
 3 & 2 \\
\end{array} \)

19.

20.

152 Chapter 3 Functions and Patterns
Determine whether each relation is a function.

21. \{(5, -7), (6, -7), (-8, -1), (0, -1)\}
22. \{(4, 5), (3, -2), (-2, 5), (4, 7)\}
23. \(x = 15\)
24. \(y = 3x - 2\)
25. \(y = 3x - 2\)
26. \(y = 3x + 2\)

If \(f(x) = 3x + 7\) and \(g(x) = x^2 - 2x\), find each value.

27. \(f(3)\)
28. \(f(-2)\)
29. \(g(5)\)
30. \(g(0)\)
31. \(g(-3) + 1\)
32. \(f(8) - 5\)
33. \(g(2c)\)
34. \(g(4n)\)
35. \(f(k + 2)\)
36. \(f(a - 1)\)
37. \(3[f(r)]\)
38. \(2[g(t)]\)

METEOROLOGY For Exercises 39–42, use the following information.

The temperature of the atmosphere decreases about 5°F for every 1000 feet increase in altitude. Thus, if the temperature at ground level is 77°F, the temperature at an altitude of \(h\) feet is found by using \(t = 77 - 0.005h\).

39. Write the equation in function notation. Then find \(f(100), f(200), f(1000)\).
40. Suppose the temperature at ground level was less than 77°F. Describe how the range values in Exercise 39 would change. Explain.
41. Graph the function.
42. Use the graph of the function to estimate the temperature at 4000 feet.

EDUCATION For Exercises 43 and 44, use the following information.

The average national math test scores \(f(s)\) for 17-year-olds can be represented as a function of the national science scores \(s\) by \(f(s) = 0.8s + 72\).

43. Graph this function.
44. What is the science score that corresponds to a math score of 308?

Determine whether each relation is a function.

45. [Graph A]
46. [Graph B]
47. [Graph C]

48. **PARKING** A parking garage charges $2.00 for the first hour, $2.75 for the second, $3.50 for the third, $4.25 for the fourth, and $5.00 for any time over four hours. Choose the graph that best represents the information and determine whether the graph represents a function. Explain.

a. [Graph A]
 b. [Graph B]
 c. [Graph C]
H.O.T. Problems

REASONING For Exercises 49 and 50, refer to the following information.
The ordered pairs $(0, 1), (3, 2), (3, -5), \text{ and } (5, 4)$ are on the graph of a relation between x and y.

49. **Determine whether x is a function of y.** Explain.

50. **Determine whether y is a function of x.** Explain.

51. **CHALLENGE** State whether the following is *sometimes*, *always*, or *never* true. Explain your reasoning. *The inverse of a function is also a function.*

52. **OPEN ENDED** Disprove the following statement by finding a counterexample. *All linear equations are functions.*

53. **Writing in Math** Use the information on page 149 to explain how functions are used in meteorology. Describe the relationship between pressure and temperature, and investigate whether the relation is a function.

STANDARDIZED TEST PRACTICE

54. Which relation is a function?

 A. $\{(-5, 6), (4, -3), (2, -1), (4, 2)\}$

 B. $\{(3, -1), (3, -5), (3, 4), (3, 6)\}$

 C. $\{(-2, 3), (0, 3), (-2, -1), (-1, 2)\}$

 D. $\{(-5, 6), (4, -3), (2, -1), (4, 2)\}$

55. **REVIEW** If $a = -4$ and $b = 8$, then $3a(b + 2) + a =$

 F. -124

 G. -98

 H. -26

 J. 18

Spiral Review

56. Express the relation shown in the table as a set of ordered pairs. Then write the inverse of the relation. (Lesson 3-1)

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>-2</td>
<td>-2</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

57. **AIRPLANES** At 1:30 P.M., an airplane leaves Tucson for Baltimore, a distance of 2240 miles. The plane flies at 280 miles per hour. A second airplane leaves Tucson at 2:15 P.M. and is scheduled to land in Baltimore 15 minutes before the first airplane. At what rate must the second airplane travel to arrive on schedule? (Lesson 2-9)

58. **RUNNING** Lacey can run a 10K race (about 6.2 miles) in 45 minutes. If she runs a 26-mile marathon at the same pace, how long will it take her to finish? (Lesson 2-6)

PREREQUISITE SKILL Solve each equation. (Lesson 2-4)

59. $r - 9 = 12$

60. $-4 = 5n + 6$

61. $3 - 8w = 35$

62. $\frac{8}{4} + 2 = 5$
Main Ideas
- Identify linear equations, intercepts, and zeros.
- Graph linear equations.

New Vocabulary
linear equation
standard form
x-intercept
y-intercept
zero

Get Ready for the Lesson
It is recommended that no more than 30% of a person’s daily caloric intake come from fat. Since each gram of fat contains 9 Calories, the most grams of fat f that you should have each day is given by $f = 0.3\left(\frac{C}{9}\right)$ or $f = \frac{C}{30}$. C is the total number of Calories C that you consume. The graph of this equation shows the maximum number of grams of fat you should consume based on the total number of Calories you consume.

Identify Linear Equations, Intercepts, and Zeros
A linear equation is the equation of a line. Linear equations can often be written in the form $Ax + By = C$. This is called the standard form of a linear equation.

KEY CONCEPT

Standard Form of a Linear Equation

The standard form of a linear equation is

$$Ax + By = C,$$

where $A \geq 0$, A and B are not both zero, and A, B, and C are integers with a greatest common factor of 1.

EXAMPLE

Identify Linear Equations

Determine whether each equation is a linear equation. If so, write the equation in standard form.

a. $y = 5 - 2x$

Rewrite the equation so that both variables are on the same side of the equation.

\[
y = 5 - 2x \quad \text{Original equation}
\]

\[
y + 2x = 5 - 2x + 2x \quad \text{Add } 2x \text{ to each side.}
\]

\[
2x + y = 5 \quad \text{Simplify.}
\]

The equation is now in standard form where $A = 2$, $B = 1$, and $C = 5$. This is a linear equation.
b. \(2xy - 5y = 6\)

Since the term \(2xy\) has two variables, the equation cannot be written in the form \(Ax + By = C\). Therefore, this is not a linear equation.

1A. \(\frac{1}{3}y = -1\)
1B. \(y = x^2 + 3\)

The \(x\)-coordinate of the point at which the graph of an equation crosses the \(x\)-axis is an \textit{x-intercept}. The \(y\)-coordinate of the point at which the graph crosses the \(y\)-axis is called a \textit{y-intercept}.

Values of \(x\) for which \(f(x) = 0\) are called \textit{zeros} of the function \(f\). The zero of a function is its \(x\)-intercept.

ANALYZE GRAPHS High school students in Palo Alto, California, can buy ticket booklets for lunch, as shown in the graph.

a. Determine the \(x\)-intercept, \(y\)-intercept, and zero.

The \(x\)-intercept is 20 because it is the \(x\)-coordinate of the point where the line crosses the \(x\)-axis. The zero of the function is also 20.

The \(y\)-intercept is 60 because it is the \(y\)-coordinate of the point where the line crosses the \(y\)-axis.

b. Describe what the intercepts mean.

The \(x\)-intercept 20 means that after 20 meals are purchased, the meal ticket booklet has a value of $0.

The \(y\)-intercept 60 means before any meals are purchased, the booklet has a value of $60.

HEALTH Use the graph at the right that shows the cost of a gym membership.

2A. Determine the \(x\)-intercept, \(y\)-intercept, and zero.

2B. Describe what the intercept(s) mean.
Analyzing Tables It is recommended that a swimming pool be drained at a maximum rate of 720 gallons per hour. The table shows the function relating the volume of water in a pool and the time in hours that the pool has been draining.

a. Determine the x-intercept, y-intercept, and zero of the graph of the function.

\[x\text{-intercept} = 14 \quad 14 \text{ is the value of } x \text{ when } y = 0. \]
\[y\text{-intercept} = 10,080 \quad 10,080 \text{ is the value of } y \text{ when } x = 0. \]
\[\text{zero} = 14 \quad \text{The zero of the function is the } x\text{-intercept of the graph.} \]

b. Describe what the intercepts mean.

The x-intercept 14 means that after 14 hours, the water has a volume of 0 gallons, or the pool is completely drained.

The y-intercept 10,080 means that the pool contained 10,080 gallons of water at time 0, or before it started to drain. This is shown in the graph.

3. Use the table to determine the x-intercept, y-intercept, and zero of the graph of the function.

<table>
<thead>
<tr>
<th>Time, x (h)</th>
<th>Volume, y (gal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10,080</td>
</tr>
<tr>
<td>2</td>
<td>8640</td>
</tr>
<tr>
<td>6</td>
<td>5760</td>
</tr>
<tr>
<td>10</td>
<td>2880</td>
</tr>
<tr>
<td>12</td>
<td>1440</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>

Graph Linear Equations The graph of an equation represents all its solutions. So, every ordered pair that satisfies the equation represents a point on the line. An ordered pair that does not satisfy the equation represents a point not on the line.

Graph by Making a Table

Graph \(y = \frac{1}{2}x - 3 \).

Select values from the domain and make a table. Then graph the ordered pairs. The domain is all real numbers, so there are infinitely many solutions. Draw a line through the points.

<table>
<thead>
<tr>
<th>(x)</th>
<th>(\frac{1}{2}x - 3)</th>
<th>(y)</th>
<th>((x, y))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>(\frac{1}{2}(-2) - 3)</td>
<td>-4</td>
<td>(-2, -4)</td>
</tr>
<tr>
<td>0</td>
<td>(\frac{1}{2}(0) - 3)</td>
<td>-3</td>
<td>(0, -3)</td>
</tr>
<tr>
<td>2</td>
<td>(\frac{1}{2}(2) - 3)</td>
<td>-2</td>
<td>(2, -2)</td>
</tr>
<tr>
<td>4</td>
<td>(\frac{1}{2}(4) - 3)</td>
<td>-1</td>
<td>(4, -1)</td>
</tr>
</tbody>
</table>

This line represents all of the solutions of \(y = \frac{1}{2}x - 3 \).

Check Your Progress

Graph each equation.

4A. \(3x + y = -1 \)
4B. \(y = -2 \)
Chapter 3
Functions and Patterns

Determine whether each equation is a linear equation. If so, write the equation in standard form.

1. \(x + y^2 = 25 \)
2. \(3y + 2 = 0 \)
3. \(\frac{3}{5}x - \frac{2}{5}y = 5 \)

Determine the \(x \)-intercept and \(y \)-intercept of each linear function and describe what the intercepts mean.

4. **Position of Scuba Diver**

<table>
<thead>
<tr>
<th>Time, (x) (s)</th>
<th>Depth, (y) (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-24</td>
</tr>
<tr>
<td>3</td>
<td>-18</td>
</tr>
<tr>
<td>6</td>
<td>-12</td>
</tr>
<tr>
<td>9</td>
<td>-6</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
</tr>
</tbody>
</table>

5. What are the zeros of the functions represented in Exercises 4 and 5?

6. Rodeos

 Tickets for a rodeo cost $5 for children and $10 for adults. The equation \(5x + 10y = 60 \) represents the number of children \(x \) and adults \(y \) who can attend the rodeo for $60. Use the \(x \)- and \(y \)-intercepts to graph the equation. What do these values mean?
Determine whether each equation is a linear equation. If so, write the equation in standard form.

12. $3x = 5y$
13. $6 - y = 2x$
14. $6xy + 3x = 4$
15. $y + 5 = 0$
16. $7y = 2x + 5x$
17. $y = 4x^2 - 1$

Determine the x-intercept, y-intercept, and zero of each linear function.

18. [Graph of $4x + 3y = 12$]

19. [Table]

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3</td>
<td>-1</td>
</tr>
<tr>
<td>-2</td>
<td>0</td>
</tr>
<tr>
<td>-1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
</tr>
</tbody>
</table>

Determine the x-intercept and y-intercept of each linear function and describe what the intercepts mean.

20. [Table]

<table>
<thead>
<tr>
<th>Time, x (min)</th>
<th>Calories Burned, y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>106</td>
</tr>
<tr>
<td>15</td>
<td>159</td>
</tr>
<tr>
<td>20</td>
<td>212</td>
</tr>
<tr>
<td>30</td>
<td>318</td>
</tr>
</tbody>
</table>

21. [Graph of Descent of Eagle]

METEOROLOGY For Exercises 33–35, use the following information.

The distance d in miles that the sound of thunder travels in t seconds is given by the equation $d = 0.21t$.

33. Make a table of values.
34. Graph the equation.
35. Use the graph to estimate how long it will take you to hear thunder from a storm that is 3 miles away.

Graph each equation.

24. $y = -1$
25. $y = 2x$
26. $y = x - 6$
27. $y = 5 - x$
28. $y = 4 - 3x$
29. $x = 3y$
30. $x = 4y - 6$
31. $x - y = -3$
32. $4x + 6y = 8$
GEOMETRY For Exercises 36–38, refer to the figure at right.
The perimeter \(P \) of a rectangle is given by \(2\ell + 2w = P \),
where \(\ell \) is the length of the rectangle and \(w \) is the width.
36. If the perimeter of the rectangle is 30 inches, write an equation for the perimeter in standard form.
37. What are the \(x \)- and \(y \)-intercepts of the graph?
Do they make sense in this problem? Explain.
38. Graph the equation.

Determine whether each equation is a linear equation. If so, write the equation in standard form.
39. \(x + \frac{1}{2}y = 7 \)
40. \(\frac{x}{2} = 10 + \frac{2y}{3} \)
41. \(7n - 8m = 4 - 2m \)
42. \(3a + b - 2 = b \)
43. \(2r - 3rs + 5s = 1 \)
44. \(\frac{3m}{4} = \frac{2n}{3} - 5 \)

Graph each equation.
45. \(1.5x + y = 4 \)
46. \(75 = 2.5x + 5y \)
47. \(\frac{4x}{3} = \frac{3y}{4} + 1 \)
48. \(y + \frac{1}{3} = \frac{1}{4}x - 3 \)
49. \(\frac{1}{2}x + y = 4 \)
50. \(1 = x - \frac{2}{3}y \)

51. Find the \(x \)- and \(y \)-intercepts of the graph of \(4x - 7y = 14 \).
52. Graph \(5x + 3y = 15 \). Where does the line intersect the \(x \)-axis? Where does the line intersect the \(y \)-axis? What is the slope?

OCEANOGRAPHY For Exercises 53 and 54, use the information at left and below.
Under water, pressure increases 4.3 pounds per square inch (psi) for every 10 feet you descend. This can be expressed by the equation \(p = 0.43d + 14.7 \),
where \(p \) is the pressure in pounds per square inch and \(d \) is the depth in feet.
53. Graph the equation and find the \(y \)-intercept.
54. Divers cannot work at depths below about 400 feet. Given this information, determine a reasonable domain and range for this situation.

55. **REASONING** Verify that the point at \((-4, 2)\) lies on the line with the equation \(y = \frac{1}{2}x + 4 \).

OPEN ENDED Describe a linear equation in the form \(Ax + By = C \) for each condition.
56. \(A = 0 \)
57. \(B = 0 \)
58. \(C = 0 \)

59. **CHALLENGE** Demonstrate how you can determine whether a point at \((x, y)\) is above, below, or on the line given by \(2x - y = 8 \) without graphing it. Give an example of each.

60. **Writing in Math** Use the information about nutrition on page 155 to explain how linear equations can be used in nutrition. Explain how you could use the Nutrition Information labels on packages to limit your fat intake.
1. If \(f(x) = 3x - 2 \) and \(g(x) = x^2 - 5 \), find each value. (Lesson 3-2)

64. \(f(4) \)
65. \(g(-3) \)
66. \(2[f(6)] \)

67. NUTRITION The cost of buying energy bars for a camping trip is given by \(y = 2.25x \). Write the equation in function notation and then find \(f(4) \) and \(f(7) \). What do these values represent? (Lesson 3-2)

Solve each equation. Then check your solution. (Lesson 2-5)

68. \(3n - 12 = 5n - 20 \)
69. \(6(x + 3) = 3x \)
70. \(2(x - 2) = 3x - (4x - 5) \)

71. BALLOONS Brandon slowly fills a deflated balloon with air. Without tying the balloon, he lets it go. Draw a graph to represent this situation. (Lesson 1-9)

PREREQUISITE SKILL Find each difference.

72. \(12 - 16 \)
73. \(-5 - (-8) \)
74. \(16 - (-4) \)
75. \(-9 - 6 \)
The power of a graphing calculator is the ability to graph different types of equations accurately and quickly. Often linear equations are graphed in the standard viewing window. The standard viewing window is \([-10, 10]\) by \([-10, 10]\) with a scale of 1 on each axis. To quickly choose the standard viewing window on a TI-83/84 Plus, press \(\text{ZOOM} \ 6\).

ACTIVITY 1

Graph \(2x - y = 3\) on a TI-83/84 Plus graphing calculator.

Step 1 Enter the equation in the \(Y=\) list.

- The \(Y=\) list shows the equation or equations that you will graph.
- Equations must be entered with the \(y\) isolated on one side of the equation. Solve the equation for \(y\), then enter it into the calculator.

\[
\begin{align*}
2x - y &= 3 \\
2x - y - 2x &= 3 - 2x \\
-y &= -2x + 3 \\
y &= 2x - 3
\end{align*}
\]

KEYSTROKES:
\[
Y= 2 \ [X,T,\theta,n] - 3
\]

Step 2 Graph the equation in the standard viewing window.

KEYSTROKES:
\[
\text{ZOOM} \ 6
\]

Sometimes a complete graph is not displayed using the standard viewing window. A **complete graph** includes all of the important characteristics of the graph on the screen. These include the origin and the \(x\)- and \(y\)-intercepts. Notice that the graph of \(2x - y = 3\) is a complete graph because all of these points are visible.

When a complete graph is not displayed using the standard viewing window, you will need to change the viewing window to accommodate these important features. You can use what you have learned about intercepts to help you choose an appropriate viewing window.
Graph \(y = 3x - 15 \) on a graphing calculator.

Step 1 Enter the equation in the Y= list and graph in the standard viewing window.

Clear the previous equation from the Y= list. Then enter the new equation and graph.

KEYSTROKES:
\begin{align*}
\text{Y= CLEAR} & \quad 3 \quad \text{X,T,\theta,n} \quad -15 \quad \text{ZOOM 6}
\end{align*}

Step 2 Modify the viewing window and graph again.

The origin and the \(x \)-intercept are displayed in the standard viewing window. But notice that the \(y \)-intercept is outside of the viewing window. Find the \(y \)-intercept.

\begin{align*}
y = 3x - 15 & \quad \text{Original equation} \\
= 3(0) - 15 & \quad \text{Replace } x \text{ with 0.} \\
= -15 & \quad \text{Simplify.}
\end{align*}

Since the \(y \)-intercept is \(-15\), choose a viewing window that includes a number less than \(-15\). The window \([-10, 10]\) by \([-20, 5]\) with a scale of 1 on each axis is a good choice.

KEYSTROKES:
\begin{align*}
\text{WINDOW} & \quad -10 \quad \text{ENTER} \quad 10 \quad \text{ENTER} \quad 1 \quad \text{ENTER} \\
& \quad -20 \quad \text{ENTER} \quad 5 \quad \text{ENTER} \quad 1 \quad \text{GRAPH}
\end{align*}

Exercises

Graph each linear equation in the standard viewing window. Determine whether the graph is complete. If the graph is not complete, choose a viewing window that will show a complete graph and graph the equation again.

1. \(y = x + 2 \)
2. \(y = 4x + 5 \)
3. \(y = 6 - 5x \)
4. \(2x + y = 6 \)
5. \(x + y = -2 \)
6. \(x - 4y = 8 \)
7. \(y = 5x + 9 \)
8. \(y = 10x - 6 \)
9. \(y = 3x - 18 \)
10. \(3x - y = 12 \)
11. \(4x + 2y = 21 \)
12. \(3x + 5y = -45 \)

For Exercises 13–15, consider the linear equation \(y = 2x + b \).

13. Choose several different positive and negative values for \(b \). Graph each equation in the standard viewing window.
14. For which values of \(b \) is the complete graph in the standard viewing window?
15. How is the value of \(b \) related to the \(y \)-intercept of the graph of \(y = 2x + b \)?
State the domain, range, and inverse of each relation. (Lesson 3-1)

1. \{(1, 3), (4, 6), (2, 3), (1, 5)\}

2. \{(-5, 8), (-1, 0), (-1, 4), (2, 7), (6, 3)\}

3. \[
\begin{array}{c|c}
 x & y \\
\hline
 11 & 5 \\
 15 & 3 \\
 -8 & 22 \\
 11 & 31 \\
\end{array}
\]

4. Determine whether each relation is a function. (Lesson 3-2)

12. \{(3, 4), (5, 3), (-1, 4), (6, 2)\}

13. \{(-1, 4), (-2, 5), (7, 2), (3, 9), (-2, 1)\}

14. MULTIPLE CHOICE Which is a true statement about the relation? (Lesson 3-2)

F As the radius increases, the area decreases.

G The relation is a linear function.

H The area is a function of the radius.

J The relation is not a function.

Graph each equation. (Lesson 3-3)

15. \(y = x - 2\)

16. \(3x + 2y = 6\)

17. MULTIPLE CHOICE If \((a, -7)\) is a solution to the equation \(8a + 3b = 3\), what is \(a\)? (Lesson 3-3)

A 2 B 3 C 3.5 D -6.5

ENTERTAINMENT For Exercises 18–20, use the following information.
The equation \(200x + 80y = 600\) represents the number of premium tickets \(x\) and the number of discount tickets \(y\) to a car race that can be bought with $600. (Lesson 3-3)

18. Graph the function.

19. Describe a domain and range that makes sense for this situation. Explain.

20. Describe what the \(x\)-and \(y\)-intercepts represent in the context of this situation.

CHEERLEADING For Exercises 6–8, use the following information.
The cost of a cheerleading camp is shown in the table. (Lesson 3-1)

6. Determine the domain and range of the relation.

7. Graph the data.

8. Describe the independent and dependent quantities in this situation.

If \(f(x) = 3x + 5\), find each value. (Lesson 3-2)

9. \(f(-4)\)

10. \(f(2a)\)

11. \(f(x + 2)\)
A probe to measure air quality is attached to a hot-air balloon. The probe has an altitude of 6.3 feet after the first second, 14.5 feet after the next second, 22.7 feet after the third second, and so on. You can make a table and look for a pattern in the data.

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Altitude (ft)</td>
<td>6.3</td>
<td>14.5</td>
<td>22.7</td>
<td>30.9</td>
<td>39.1</td>
<td>47.3</td>
<td>55.5</td>
<td>63.7</td>
</tr>
</tbody>
</table>

+ 8.2 + 8.2 + 8.2 + 8.2 + 8.2 + 8.2 + 8.2

Recognize Arithmetic Sequences
A sequence is a set of numbers, called terms, in a specific order. If the difference between successive terms is constant, then it is called an arithmetic sequence. The difference between the terms is called the common difference.

EXAMPLE
Identify Arithmetic Sequences

Determine whether each sequence is arithmetic. Explain.

a. 1, 2, 4, 8, ...

\[
\begin{align*}
1 & \quad 2 & \quad 4 & \quad 8 \\
+1 & \quad +2 & \quad +4 & \quad \\
\end{align*}
\]

This is not an arithmetic sequence because the difference between terms is not constant.

b. \(\frac{1}{2}, \frac{1}{4}, 0, -\frac{1}{4}, \ldots \)

\[
\begin{align*}
\frac{1}{2} & \quad \frac{1}{4} & \quad 0 & \quad -\frac{1}{4} \\
\frac{-1}{4} & \quad \frac{1}{4} & \quad \frac{-1}{4} & \quad \\
\end{align*}
\]

This is an arithmetic sequence because the difference between terms is constant.

1A. -26, -22, -18, -14, ...

1B. 1, 4, 9, 25, ...

ELLIPSES
The three dots after the last number in a sequence are called an ellipsis. The ellipsis indicates that there are more terms in the sequence that are not listed.

NEW VOCABULARY
- sequence
- terms
- arithmetic sequence
- common difference

MAIN IDEAS
- Recognize arithmetic sequences.
- Extend and write formulas for arithmetic sequences.
Write Arithmetic Sequences You can use the common difference of an arithmetic sequence to find the next term in the sequence.

KEY CONCEPT

Writing Arithmetic Sequences

Words Each term of an arithmetic sequence after the first term can be found by adding the common difference to the preceding term.

Symbols An arithmetic sequence can be found as follows:

\[a_1, a_1 + d, a_2 + d, a_3 + d, \ldots \]

where \(d \) is the common difference, \(a_1 \) is the first term, \(a_2 \) is the second term, and so on.

MONEY The arithmetic sequence 74, 67, 60, 53, ... represents the amount of money that Tiffany owes her mother at the end of each week. Find the next three terms.

Find the common difference by subtracting successive terms.

\[
\begin{align*}
74 & \quad 67 & \quad 60 & \quad 53 & \quad ? & \quad ? & \quad ? \\
-7 & \quad -7
\end{align*}
\]

The common difference is \(-7\).

Add \(-7\) to the last term of the sequence to get the next term in the sequence. Continue adding \(-7\) until the next three terms are found.

\[
\begin{align*}
53 & \quad 46 & \quad 39 & \quad 32 & \quad \text{The next three terms are 46, 39, 32.}
\end{align*}
\]

CHECK Your Progress

2. Find the next four terms of the arithmetic sequence 9.5, 11.0, 12.5, 14.0, ...

Each term in an arithmetic sequence can be expressed in terms of the first term \(a_1\) and the common difference \(d\).

<table>
<thead>
<tr>
<th>Term</th>
<th>Symbol</th>
<th>In Terms of (a_1) and (d)</th>
<th>Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>first term</td>
<td>(a_1)</td>
<td>(a_1)</td>
<td>8</td>
</tr>
<tr>
<td>second term</td>
<td>(a_2)</td>
<td>(a_1 + d)</td>
<td>8 + 1(3) = 11</td>
</tr>
<tr>
<td>third term</td>
<td>(a_3)</td>
<td>(a_1 + 2d)</td>
<td>8 + 2(3) = 14</td>
</tr>
<tr>
<td>fourth term</td>
<td>(a_4)</td>
<td>(a_1 + 3d)</td>
<td>8 + 3(3) = 17</td>
</tr>
<tr>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
<td>\cdots</td>
</tr>
<tr>
<td>(n)th term</td>
<td>(a_n)</td>
<td>(a_1 + (n - 1)d)</td>
<td>8 + (n - 1)(3)</td>
</tr>
</tbody>
</table>

This leads to the formula that can be used to find any term in an arithmetic sequence.
SHIPPING The arithmetic sequence 12, 23, 34, 45, ... represents the total number of ounces that a box weighs after each additional book is added.

a. Write an equation for the nth term of the sequence.

In this sequence, the first term, a_1, is 12. Find the common difference.

\[
\begin{align*}
12 & \quad 23 & \quad 34 & \quad 45 \\
+11 & \quad +11 & \quad +11
\end{align*}
\]

The common difference is 11.

Use the formula for the nth term to write an equation.

\[
\begin{align*}
a_n &= a_1 + (n - 1)d \\
&= 12 + (n - 1)11 \quad a_1 = 12, d = 11 \\
&= 12 + 11n - 11 \quad \text{Distributive Property} \\
&= 11n + 1 \quad \text{Simplify.}
\end{align*}
\]

b. Find the 10th term in the sequence.

\[
\begin{align*}
a_n &= 11n + 1 \quad \text{Equation for the } n \text{th term} \\
a_{10} &= 11(10) + 1 \quad \text{Replace } n \text{ with 10.} \\
a_{10} &= 111 \quad \text{Simplify.}
\end{align*}
\]

c. Graph the first five terms of the sequence.

<table>
<thead>
<tr>
<th>n</th>
<th>$11n + 1$</th>
<th>a_n</th>
<th>(n, a_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11(1) + 1</td>
<td>12</td>
<td>(1, 12)</td>
</tr>
<tr>
<td>2</td>
<td>11(2) + 1</td>
<td>23</td>
<td>(2, 23)</td>
</tr>
<tr>
<td>3</td>
<td>11(3) + 1</td>
<td>34</td>
<td>(3, 34)</td>
</tr>
<tr>
<td>4</td>
<td>11(4) + 1</td>
<td>45</td>
<td>(4, 45)</td>
</tr>
<tr>
<td>5</td>
<td>11(5) + 1</td>
<td>56</td>
<td>(5, 56)</td>
</tr>
</tbody>
</table>

Consider the arithmetic sequence 3, -10, -23, -36,

3A. Write an equation for the nth term of the sequence.

3B. Find the 15th term in the sequence.

3C. Graph the first five terms of the sequence.

Personal Tutor at algebra1.com

Lesson 3-4 Arithmetic Sequences 167
Determine whether each sequence is an arithmetic sequence. If it is, state the common difference.
1. 24, 16, 8, 0, ...
2. $3 \frac{1}{4}, 6 \frac{1}{2}, 13, 26, ...

Find the next three terms of each arithmetic sequence.
3. 7, 14, 21, 28, ...
4. $-34, -29, -24, -19, ...

Find the nth term of each arithmetic sequence described.
5. $a_1 = 3, d = 4, n = 8$
6. $a_1 = 10, d = -5, n = 21$
7. 23, 25, 27, 29, ... for $n = 12$
8. $-27, -19, -11, -3, ...$ for $n = 17$

Fitness Latisha is beginning an exercise program that calls for 20 minutes of walking each day for the first week. Each week thereafter, she has to increase her walking by 7 minutes a day. Which week of her exercise program will be the first one in which she will walk over an hour a day?

Write an equation for the nth term of each arithmetic sequence. Then graph the first five terms of the sequence.
10. 6, 12, 18, 24, ...
11. 12.1, 17.2, 22.3, 27.4, ...

Geometry For Exercises 20 and 21, use the diagram below that shows the perimeter of the pattern consisting of trapezoids.

- 1 trapezoid
- 2 trapezoids
- 3 trapezoids
- 4 trapezoids

20. Write a formula that can be used to find the perimeter of a pattern containing n trapezoids.
21. What is the perimeter of the pattern containing 12 trapezoids?

Find the nth term of each arithmetic sequence described.
22. $a_1 = 8, d = 3, n = 16$
23. $a_1 = 52, d = 12, n = 102$
24. $a_1 = \frac{5}{8}, d = \frac{1}{8}, n = 22$
25. $-9, -7, -5, -3, ...$ for $n = 18$
26. $-7, -3, 1, 5, ...$ for $n = 35$
27. 0.5, 1, 1.5, 2, ... for $n = 50$
THEATER For Exercises 28 and 29, use the following information.
The Coral Gables Actors’ Playhouse has 7 rows of seats in the orchestra section. The number of seats in each row forms an arithmetic sequence, as shown in the table. On opening night, 368 tickets were sold for the orchestra section.

28. Write a formula to find the number of seats in any given row of the orchestra section of the theater.

29. How many seats are in the first row? Was this section oversold?

Write an equation for the nth term of the arithmetic sequence. Then graph the first five terms in the sequence.

30. $-3, -6, -9, -12, \ldots$

31. $8, 9, 10, 11, \ldots$

32. $2, 8, 14, 20, \ldots$

33. $-18, -16, -14, -12, \ldots$

Find the next three terms of each arithmetic sequence.

34. $2\frac{1}{3}, 2\frac{2}{3}, 3, 3\frac{1}{3}, \ldots$

35. $\frac{7}{12}, 1\frac{1}{3}, 2\frac{1}{12}, 2\frac{5}{6}, \ldots$

36. 200 is the ___?___th term of 24, 35, 46, 57,\ldots.

37. -34 is the ___?___th term of 30, 22, 14, 6, \ldots

38. Find the value of y that makes $y + 4, 6, y, \ldots$ an arithmetic sequence.

39. Find the value of y that makes $y + 8, 4y + 6, 3y, \ldots$ an arithmetic sequence.

ANALYZE TABLES For Exercises 40–43, use the following information.
Taylor and Brooklyn are recording how far a ball rolls down a ramp during each second. The table shows the data they have collected.

<table>
<thead>
<tr>
<th>Time (s)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance traveled (cm)</td>
<td>9</td>
<td>13</td>
<td>17</td>
<td>21</td>
<td>25</td>
<td>29</td>
</tr>
</tbody>
</table>

40. Do the distances traveled by the ball form an arithmetic sequence? Justify your answer.

41. Write an equation for the sequence. How far will the ball have traveled after 35 seconds?

42. Graph the sequence.

43. Suppose that for each second, the ball rolls twice the distance shown in the table. Is the graph representing this sequence linear? If so, describe how its rate of change is different from the rate of change shown in your original graph.

GAMES For Exercises 44 and 45, use the following information.
Contestants on a game show win money by answering 10 questions. The value of each question increases by $1500.

44. If the first question is worth $2500, find the value of the 10th question.

45. If the contestant answers all 10 questions correctly, how much money will he or she win?

EXTRA PRACTICE See pages 724, 746.

H.O.T. Problems Create an arithmetic sequence with a common difference of -10.

46. OPEN ENDED

47. CHALLENGE Is $2x + 5, 4x + 5, 6x + 5, 8x + 5, \ldots$ an arithmetic sequence?

 Explain your reasoning.
48. **FIND THE ERROR** Marisela and Richard are finding the common difference for the arithmetic sequence \(-44, -32, -20, -8\). Who is correct? Explain.

<table>
<thead>
<tr>
<th>Marisela</th>
<th>Richard</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-32 - (-44) = 12)</td>
<td>(-44 - (-32) = 12)</td>
</tr>
<tr>
<td>(-20 - (-32) = 12)</td>
<td>(-32 - (-20) = 12)</td>
</tr>
<tr>
<td>(-8 - (-20) = 12)</td>
<td>(-20 - (-8) = 12)</td>
</tr>
</tbody>
</table>

49. **Writing in Math** Refer to the data about measuring air quality on page 165. Write a formula for the arithmetic sequence that represents the altitude of the probe after each second, and an explanation of how you could use this information to predict the altitude of the probe after 15 seconds.

Spiral Review

Determine whether each equation is a linear equation. If so, write the equation in standard form. (Lesson 3-3)

50. **REVIEW** Luis deposits $25 each week into a savings account from his part-time job. If he has $350 in savings now, how much will he have in 12 weeks?

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>$600</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>$625</td>
<td>C</td>
</tr>
<tr>
<td>D</td>
<td>$675</td>
<td></td>
</tr>
</tbody>
</table>

51. What is the slope of a line that contains the point at \((1, -5)\) and has the same \(y\)-intercept as \(2x - y = 9\)?

F	-9
G	-7
H	2
J	4

52. **REVIEW** Which is a true statement about the relation graphed?

A. As the side length of a cube increases, the surface area decreases.
B. Surface area is the independent quantity.
C. The surface area of a cube is a function of the side length.
D. The relation is not a function.

TAX The amount of sales tax in California is given by \(y = 0.0725x\), where \(x\) is the cost of an item that you buy. Write the equation in function notation and then find \(f(40)\). What does this value represent? (Lesson 3-2)

54. Determine whether each equation is a linear equation. If so, write the equation in standard form. (Lesson 3-3)

53. \(x^2 + 3x - y = 8\)
54. \(y - 8 = 10 - x\)
55. \(2y = y + 2x - 3\)

57. Translate the sentence *The sum of twice \(r\) and three times \(s\) is identical to thirteen* into an algebraic equation. (Lesson 2-1)

PREREQUISITE SKILL Graph each point on the same coordinate plane. (Lesson 1-9)

58. \(J(3, 0)\)
59. \(L(-3, -4)\)
60. \(M(3, 5)\)
61. \(N(5, -1)\)
Inductive and Deductive Reasoning

Throughout your life, you have used reasoning skills, possibly without even knowing it. As a child, you used inductive reasoning to conclude that your hand would hurt if you touched the stove while it was hot. Now, you use inductive reasoning when you decide, after many trials, that one of the worst ways to prepare for an exam is by studying only an hour before you take it. Inductive reasoning is used to derive a general rule after observing many individual events.

Inductive reasoning involves:
- observing many examples
- looking for a pattern
- making a conjecture
- checking the conjecture
- discovering a likely conclusion

With deductive reasoning, you use a general rule to help you decide about a specific event. You come to a conclusion by accepting facts. There is no conjecturing involved. Read the two statements below.

1) If a person wants to play varsity sports, he or she must have a C average in academic classes.
2) Jolene is playing on the varsity tennis team.

If these two statements are accepted as facts, then the obvious conclusion is that Jolene has at least a C average in her academic classes. This is an example of deductive reasoning.

Reading to Learn

1. Explain the difference between inductive and deductive reasoning. Then give an example of each.
2. When Sherlock Holmes reaches a conclusion about a murderer’s height because he knows the relationship between a man’s height and the distance between his footprints, what kind of reasoning is he using? Explain.
3. When you examine a sequence of numbers and decide that it is an arithmetic sequence, what kind of reasoning are you using? Explain.
4. Once you have found the common difference for an arithmetic sequence, what kind of reasoning do you use to find the 100th term in the sequence?
5. a. Copy and complete the following table.

<table>
<thead>
<tr>
<th></th>
<th>3^1</th>
<th>3^2</th>
<th>3^3</th>
<th>3^4</th>
<th>3^5</th>
<th>3^6</th>
<th>3^7</th>
<th>3^8</th>
<th>3^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>9</td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b. Write the sequence of numbers representing the numbers in the ones place.
c. Find the number in the ones place for the value of 3100. Explain your reasoning. State the type of reasoning that you used.

6. A sequence contains all numbers less than 50 that are divisible by 5. You conclude that 35 is in the sequence. Is this an example of inductive or deductive reasoning? Explain.
Water is one of the few substances that expands when it freezes. The table shows volumes of water and the corresponding volumes of ice. The relation in the table can be represented by a graph. Let w represent the volume of water, and let c represent the volume of ice. When the ordered pairs are graphed, they form a linear pattern. This pattern can be described by an equation.

Proportional Relationships

Using a pattern to find a general rule utilizes **inductive reasoning**. If the relationship between the domain and range of a relation is linear, the relationship can be described by a linear equation. If the equation is of the form $y = kx$, then the relationship is proportional. In a proportional relationship, the graph will pass through $(0, 0)$.

FUEL ECONOMY

The table below shows the average amount of gas Rogelio’s car uses, depending on how many miles he drives.

<table>
<thead>
<tr>
<th>Gallons of gasoline</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miles driven</td>
<td>28</td>
<td>56</td>
<td>84</td>
<td>112</td>
<td>140</td>
</tr>
</tbody>
</table>

a. Graph the data. What conclusion can you make about the relationship between the number of gallons used and the number of miles driven?

The graph shows a linear relationship between the number of gallons used g and the number of miles driven m. **
b. Write an equation to describe this relationship.

Look at the relationship between the values in the domain and range to find a pattern that can be described by an equation.

\[
\begin{array}{c|c|c|c|c|c}
\text{Gallons of gasoline} & 1 & 2 & 3 & 4 & 5 \\
\text{Miles driven} & 28 & 56 & 84 & 112 & 140 \\
\end{array}
\]

The difference of the values for \(g \) is 1, and the difference of the values for \(m \) is 28. This suggests that \(m = 28g \). Check to see if this equation is correct by substituting values of \(g \) into the equation.

\[
\begin{align*}
\text{CHECK} & \quad \text{If } g = 1, \text{ then } m = 28(1) \text{ or } 28. \quad \checkmark \\
& \quad \text{If } g = 2, \text{ then } m = 28(2) \text{ or } 56. \quad \checkmark \\
& \quad \text{If } g = 3, \text{ then } m = 28(3) \text{ or } 84. \quad \checkmark \\
\end{align*}
\]

The equation checks. Since this relation is a function, we can write the equation as \(f(g) = 28g \), where \(f(g) \) represents the number of miles driven.

FUND-RAISING The table shows the cost of buying Spanish Club T-shirts.

\[
\begin{array}{c|c|c|c|c|}
\text{Number of T-shirts} & 1 & 2 & 3 & 4 \\
\text{Total Cost ($) } & 7.50 & 15.00 & 22.50 & 30.00 \\
\end{array}
\]

1A. Graph the data and describe the relationship between the number of T-shirts bought and the amount spent.

1B. Write an equation to describe this relationship.

Nonproportional Relationships Some linear relationships are nonproportional. In the equation of a nonproportional situation, a constant must be added or subtracted from the variable expression.
CHECK

Suppose the equation is \(y = 2x \). If \(x = 1 \), then \(y = 2(1) \) or 2. But the \(y \)-value for \(x = 1 \) is 5. This is a difference of 3. Try some other values in the domain to see if the same difference occurs.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2x)</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>(y)</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
<td>13</td>
</tr>
</tbody>
</table>

\(y \) is always 3 more than \(2x \).

This pattern suggests that 3 should be added to one side of the equation in order to correctly describe the relation. Check \(y = 2x + 3 \).

If \(x = 2 \), then \(y = 2(2) + 3 \) or 7.

If \(x = 3 \), then \(y = 2(3) + 3 \) or 9.

Thus, \(y = 2x + 3 \) correctly describes this relation. Since this relation is a function, the equation in function notation is \(f(x) = 2x + 3 \).

2. Write an equation in function notation for the relation shown in the table.

<table>
<thead>
<tr>
<th>(x)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(y)</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

GEOMETRY

For Exercises 3 and 4, use the table below that shows the perimeter of a square with sides of a given length.

<table>
<thead>
<tr>
<th>Side length (in)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimeter (in)</td>
<td>4</td>
<td>8</td>
<td>12</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>

3. Graph the data. What can you conclude about the relationship between side length and perimeter?

4. Write an equation to describe the relationship.

ANALYZE TABLES

For Exercises 5–7, use the table below that shows the underground temperature of rocks at various depths below Earth’s surface.

<table>
<thead>
<tr>
<th>Depth (km)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature (°C)</td>
<td>55</td>
<td>90</td>
<td>125</td>
<td>160</td>
<td>195</td>
<td>230</td>
</tr>
</tbody>
</table>

5. Graph the data.

6. Write an equation in function notation for the relation.

7. Find the temperature of a rock that is 10 kilometers below the surface.
Find the next three terms in each sequence.

8. 0, 2, 6, 12, 20, …
9. 9, 7, 10, 8, 11, 9, 12, …
10. 1, 4, 9, 16, …
11. 0, 2, 5, 9, 14, 20, …
12. \(a + 1, a + 2, a + 3, \ldots\)
13. \(x + 1, 2x + 1, 3x + 1, \ldots\)

Write an equation in function notation for each relation.

14. [Graph]
15. [Graph]
16. [Graph]
17. [Graph]

18. **TRAVEL** On an island cruise in Hawaii, each passenger is given a lei. A crew member hands out 3 red, 3 blue, and 3 green leis in that order. If this pattern is repeated, what color lei will the 50th person receive?

NUMBER THEORY For Exercises 19 and 20, use the following information.
In 1201, Leonardo Fibonacci introduced his now famous pattern of numbers called the Fibonacci sequence.

\[1, 1, 2, 3, 5, 8, 13, \ldots\]

Notice the pattern in this sequence. After the second number, each number in the sequence is the sum of the two numbers that precede it. That is, \(2 = 1 + 1\), \(3 = 2 + 1\), \(5 = 3 + 2\), and so on.

19. Write the first 12 terms of the Fibonacci sequence.
20. Notice that every third term is divisible by 2. What do you notice about every fourth term? every fifth term?

Write an equation in function notation for each relation.

21. [Graph]
22. [Graph]
FITNESS For Exercises 23 and 24, use the table below that shows the maximum heart rate to maintain during aerobic activities such as biking.

<table>
<thead>
<tr>
<th>Age (yr)</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse rate (beats/min)</td>
<td>175</td>
<td>166</td>
<td>157</td>
<td>148</td>
<td>139</td>
<td>130</td>
</tr>
</tbody>
</table>

Source: Ontario Association of Sport and Exercise Sciences

23. Write an equation in function notation for the relation.
24. What would be the maximum heart rate to maintain in aerobic training for a 10-year-old? an 80-year-old?

H.O.T. Problems

25. CHALLENGE Describe how inductive reasoning can be used to write an equation from a pattern.

26. OPEN ENDED Create a number sequence in which the first term is 4. Explain the pattern that you used.

27. Writing in Math Use the information about science on page 172 to explain how writing equations from patterns is important in science. Explain the relationship between the volumes of water and ice.

28. The table below shows the cost \(C \) of renting a pontoon boat for \(h \) hours.

<table>
<thead>
<tr>
<th>Hours</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cost</td>
<td>7.25</td>
<td>14.50</td>
<td>21.75</td>
</tr>
</tbody>
</table>

Which equation best represents the data?
A. \(C = 7.25h \)
B. \(C = h + 7.25 \)
C. \(C = 21.75 - 7.25h \)
D. \(C = 7.25h + 21.75 \)

29. REVIEW Donald can ride 8 miles on his bicycle in 30 minutes. At this rate, how long would it take him to ride 30 miles?

F. 8 hours
G. 6 hours 32 minutes
H. 2 hours
J. 1 hour 53 minutes

Find the next three terms of each arithmetic sequence. (Lesson 3-4)

30. 9, 5, 1, \(-3\), …
31. \(-25, -19, -13, -7, \ldots \)
32. 22, 34, 46, 58, …

Graph each equation. (Lesson 3-3)

33. \(y = x + 3 \)
34. \(y = 2x - 4 \)
35. \(2x + 5y = 10 \)

36. IN THE MEDIA The following statement appeared on a news Web site shortly after a giant lobster named Bubba was found near Nantucket, Massachusetts. Approximately how much did Bubba weigh? (Lesson 2-3)

“At Tuesday’s price of $14.98 a pound, Bubba would retail for about $350.”

Source: cnn.com
Key Concepts

Representing Relations and Functions (Lessons 3-1 and 3-2)
- Relation Q is the inverse of relation S if, and only if, for every ordered pair (a, b) in S, there is an ordered pair (b, a) in Q.
- A function is a relation in which each element of the domain is paired with exactly one element of the range.

Linear Functions (Lesson 3-3)
- The standard form of a linear equation is $Ax + By = C$, where $A \geq 0$, A and B are not both zero, and A, B, and C are integers with the greatest common factor of 1.

Arithmetic Sequences (Lesson 3-4)
- An arithmetic sequence is a numerical pattern that increases or decreases at a constant rate or value called the common difference.
- The nth term a_n of an arithmetic sequence with first term a_1 and common difference d is given by $a_n = a_1 + (n - 1)d$, where n is a positive integer.

Number Patterns (Lesson 3-5)
- When you make a conclusion based on a pattern of examples, you are using inductive reasoning.

Vocabulary Check
State whether each sentence is true or false. If false, replace the underlined word or number to make a true sentence.

1. The mapping of a relation is obtained by switching the coordinates of each ordered pair.
2. The functional value of $g(x)$ for $x = 8$ is $g(8)$.
3. To determine if a graph represents a function, you can use the vertical line test.
4. A relation is a set of ordered pairs.
5. In a function, $f(x)$ represents the elements of the domain.
6. The x-coordinate of the point at which a graph of an equation crosses the x-axis is an x-intercept.
7. A linear equation is the equation of a line.
8. The difference between the terms of an arithmetic sequence is called the inverse.
9. The regular form of a linear equation is $Ax + By = C$.
10. Values of x for which $f(x) = 0$ are called zeros of the function f.

Key Vocabulary
- arithmetic sequence (p. 165)
- common difference (p. 165)
- function (p. 149)
- function notation (p. 150)
- function value (p. 150)
- inductive reasoning (p. 172)
- inverse (p. 144)
- linear equation (p. 155)
- mapping (p. 143)
- sequence (p. 165)
- standard form (p. 155)
- terms (p. 165)
- vertical line test (p. 150)
- x-intercept (p. 156)
- y-intercept (p. 156)
- zero (p. 156)
Lesson-by-Lesson Review

3–1 Representing Relations (pp. 143–148)

Express each relation as a table, a graph, and a mapping. Then determine the domain and range.

11. \{(-2, 6), (3, -2), (3, 0), (4, 6)\}

12. \{(2, 5), (-3, 1), (4, -2), (2, 3)\}

RIDES For Exercises 13 and 14, use the table. It shows the angles of descent and the vertical drops for five roller coasters.

- Angle of Descent (°) Vertical Drop (ft)
- 45 72
- 52 137
- 55 118
- 60 195
- 80 300

13. Determine the domain and range.

14. Graph the data. What conclusions might you make from the graph?

Example 1 Express the relation \{(3, 2), (5, 3), (4, 3), (5, 2)\} as a table, a graph, and a mapping. Then determine the domain and range.

<table>
<thead>
<tr>
<th>Table</th>
<th>Graph</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>y</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

The domain is \{3, 4, 5\}. The range is \{2, 3\}.

3–2 Representing Functions (pp. 149–154)

Determine whether each relation is a function.

15. \{(5, 3), (1, 4), (-6, 5), (1, 6), (-2, 7)\}

16. \{(2, 3), (-3, -4), (-1, 3), (6, 7)\}

If \(f(x) = x^2 - x + 1\), find each value.

17. \(f(-1)\)

18. \(f(5) - 3\)

19. \(f(a)\)

20. DOLPHINS The amount of food that an adult bottlenose dolphin eats per day can be approximated by \(y = 0.05x\), where \(x\) is the dolphin’s body weight in pounds. Write the equation in function notation and then find \(f(460)\). What does this value represent?

Example 2 Determine whether the relation shown is a function.

Explain.

Since each element of the domain is paired with exactly one element of the range, the relation is a function.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-4</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Example 3 If \(g(x) = 2x - 1\), find \(g(-6)\).

\[g(-6) = 2(-6) - 1\]

Replace \(x\) with \(-6\).

\[= -12 - 1\]

Multiply.

\[= -13\]

Subtract.
Linear Functions (pp. 155–161)

Determine the x-intercept, y-intercept, and zero of each linear function.

21.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>-8</td>
<td>0</td>
</tr>
<tr>
<td>-4</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
</tr>
</tbody>
</table>

22.

Graph each equation.

23. $y = -x + 2$

24. $x + 5y = 4$

25. $2x - 3y = 6$

26. $5x + 2y = 10$

27. **SOUND** The distance d in kilometers that sound waves travel through water is given by $d = 1.6t$, where t is the time in seconds. Graph the equation. Estimate how far sound can travel through water in 7 seconds.

Arithmetic Sequences (pp. 165–170)

Find the next three terms of each arithmetic sequence.

28. $6, 11, 16, 21, \ldots$

29. $1.4, 1.2, 1.0, 0.8, \ldots$

30. $-3, -11, -19, -27, \ldots$

Find the nth term of each arithmetic sequence described.

31. $a_1 = 6, d = 5, n = 11$

32. $28, 25, 22, 19, \ldots$ for $n = 8$

33. **MONEY** The table represents Tiffany’s income. Write an equation for this sequence and use the equation to find her income if she works 20 hours.

<table>
<thead>
<tr>
<th>Hours Worked</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income ($)</td>
<td>20.50</td>
<td>29</td>
<td>37.50</td>
<td>46</td>
</tr>
</tbody>
</table>

Example 4

Graph $3x - y = 4$ by using the x- and y-intercepts.

Find the x-intercept.

$3x - y = 4$

$3x - 0 = 4$ Let $y = 0$.

$x = \frac{4}{3}$

The graph intersects the x-axis at $\left(\frac{4}{3}, 0\right)$.

Find the y-intercept.

$3x - y = 4$

$3(0) - y = 4$ Let $x = 0$.

$y = -4$

y-intercept: -4

The graph intersects the y-axis at $(0, -4)$. Plot these points. Then draw the line through them.

Example 5

Find the next three terms of the arithmetic sequence $10, 23, 36, 49, \ldots$

Find the common difference.

$10, 23, 36, 49$

$+ 13 + 13 + 13$

$So, d = 13.$

Add 13 to the last term of the sequence. Continue adding 13 until the next three terms are found.

$49, 62, 75, 88$

$+ 13 + 13 + 13$

The next three terms are 62, 75, and 88.
3-5 Proportional and Nonproportional Relationships

Write an equation in function notation for each relation.

34. [Graph of a linear function]

35. [Graph of a linear function]

Example 6 Write an equation in function notation for the relation graphed at the right.

Make a table of ordered pairs for several points on the graph.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>y</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

The difference in y-values is twice the difference of x-values. This suggests that $y = 2x$. However, $3 \neq 2(1)$. Compare the values of y to the values of $2x$.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>y</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
<td>11</td>
</tr>
</tbody>
</table>

y is always 1 more than $2x$.

The difference between y and $2x$ is always 1. So the equation is $y = 2x + 1$. Since this relation is also a function, it can be written as $f(x) = 2x + 1$.

ANALYZE TABLES For Exercises 36–38, use the table below that shows the cost of picking your own strawberries at a local farm.

<table>
<thead>
<tr>
<th>Number of Pounds</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Cost ($)</td>
<td>1.25</td>
<td>2.50</td>
<td>3.75</td>
<td>5.00</td>
</tr>
</tbody>
</table>

36. Graph the data.

37. Write an equation in function notation to describe this relationship.

38. How much would 6 pounds of strawberries cost if you picked them yourself?
Chapter 3 Practice Test

Express the relation shown in each table, mapping, or graph as a set of ordered pairs. Then write the inverse of the relation.

1. \(x \) \(f(x) \)
 \[
 \begin{array}{|c|c|}
 \hline
 x & f(x) \\
 \hline
 0 & -1 \\
 2 & 4 \\
 4 & 5 \\
 6 & 10 \\
 \hline
 \end{array}
 \]

2. \(x \) \(y \)
 \[
 \begin{array}{|c|c|}
 \hline
 x & y \\
 \hline
 -1 & 2 \\
 -2 & 2 \\
 -3 & 2 \\
 \hline
 \end{array}
 \]

Determine whether each relation is a function.

4. \{(2, 4), (3, 2), (4, 6), (5, 4)\}
5. \{(3, 1), (2, 5), (4, 0), (3, -2)\}
6. \(8y = 7 + 3x \)

If \(f(x) = -2x + 5 \) and \(g(x) = x^2 - 4x + 1 \), find each value.

7. \(g(-2) \)
8. \(f\left(\frac{1}{2}\right) \)
9. \(g(3a) + 1 \)
10. \(f(x + 2) \)

TEMPERATURE The equation to convert Celsius temperature \(C \) to Kelvin temperature \(K \) is shown in the graph.

11. State the independent and dependent variables. Explain.
12. Determine the \(x \)-intercept and \(y \)-intercept and describe what the intercepts mean.

13. **MULTIPLE CHOICE** If \(f(x) = 3x - 2 \), find \(f(8) - f(-5) \).

 A 7
 B 9
 C 37
 D 39

Graph each equation.

14. \(y = x + 2 \)
15. \(y = 4x \)
16. \(x + 2y = -1 \)
17. \(-3x = 5 - y \)

Find the next three terms in each sequence.

18. 5, -10, 15, -20, 25, ...
19. 5, 5, 6, 8, 11, 15, ...

BIOLOGY For Exercises 20 and 21, use the following information.
The amount of blood in the body can be predicted by the equation \(y = 0.07w \), where \(y \) is the number of pints of blood and \(w \) is the weight of a person in pounds.

20. Graph the equation.
21. Predict the weight of a person whose body holds 12 pints of blood.

Determine whether each sequence is an arithmetic sequence. If it is, state the common difference.

22. -40, -32, -24, -16, ...
23. 0.75, 1.5, 3, 6, 12, ...
24. 5, 17, 29, 41, ...

25. **MULTIPLE CHOICE** In each figure, only one side of each regular pentagon touches. Each side of each pentagon is 1 centimeter. If the pattern continues, what is the perimeter of a figure that has 6 pentagons?

 F 15 cm
 G 25 cm
 H 20 cm
 J 30 cm
Read each question. Then fill in the correct answer on the answer document provided by your teacher or on a sheet of paper.

1. The function $c(x) = 0.50(x - 100) + 20$ represents the charge for renting a car at Scott’s Rental Cars when a car is driven x miles. Which statement best represents the formula for this charge?
 A The charge consists of a set fee of $.50 and 20 dollars for each mile over 100 miles.
 B The charge consists of a set fee of $100 and $0.50 for each mile over 20 miles.
 C The charge consists of a set fee of $20 and $0.50 per mile for each mile.
 D The charge consists of a set fee of $20 and $0.50 per mile over 100 miles.

2. Which problem is best represented by the number sentence $20 + 2(20 - x) = 54$?
 F Kayla babysat for 2 weeks. For the first week she babysat for 20 hours. For the second week she babysat for less than 20 hours. She babysat for a total of 54 hours in those two weeks. How many less hours did she babysit for in the second week?
 G Jocelyn ran 20 miles the first week of a training program. The second and third week she ran less than 20 miles. In the second and third week she ran the same number of miles. In the three weeks she ran a total of 54 miles. How many miles less did she run each of the second and third weeks?
 H Steven earned $20 at his job and washed 2 cars in less than 20 minutes. He earned a total of $54. How much did he earn per washed car?
 J Ely earned $20 walking dogs and sold 2 magazine subscriptions for $20 each. Now he has $54. How much did he earn?

3. GRIDDABLE What is the value of the expression $(4 \cdot 1)^2 - \frac{(2 + 6)}{(4 \cdot 2)}$?

4. Which is the best representation of the function $y = |x|$?
 A
 B
 C
 D

5. Which is NOT a correct representation of the function $f(x) = \{(3, 1), (6, 2), (9, 3), (12, 4)\}$?
 F
 G
 H
 J

Question 5 Always read every answer choice, particularly in questions that ask, “Which is NOT a correct representation of the function?”
6. Michael wants to write an expression that will always produce an odd integer. Which of the following will always produce an odd integer, \(n \)?
 \[\text{A} \quad n + 1 \]
 \[\text{B} \quad 2n + 2 \]
 \[\text{C} \quad 2n + 1 \]
 \[\text{D} \quad 3n + 1 \]

7. GRIDDABLE Marcus and Peter are swimming laps together. Marcus gains 4 laps on Peter in 2 hours. How many laps will he gain in 45 minutes?

8. Thomas recorded data on a game at the carnival which awards points for throwing a dart at a dart board. If the dart lands on a yellow space you get \(x \) points and if the dart lands on a red space you receive \(y \) points. Amy threw 12 darts that landed in the yellow space and 9 darts that landed in the red space. Which expression gives the average point per dart throw?
 \[\text{F} \quad 21\left(\frac{12}{x} + \frac{9}{y}\right) \]
 \[\text{G} \quad \frac{9x + 12y}{21} \]
 \[\text{H} \quad \frac{12x + 9y}{21} \]
 \[\text{J} \quad \frac{x + y}{21} \]

9. Carmen wrapped a ribbon around the girth of a cube-shaped present. She used 48 inches of ribbon to fit exactly around the present.

What is the volume of the present?
 \[\text{A} \quad 12 \text{ in}^3 \]
 \[\text{B} \quad 48 \text{ in}^3 \]
 \[\text{C} \quad 144 \text{ in}^3 \]
 \[\text{D} \quad 1728 \text{ in}^3 \]

10. The area of a trapezoid \(A \) is \(\frac{1}{2} \) times the sum of the bases \(a \) and \(b \) times the height. Which equation best represents this relationship?
 \[\text{F} \quad A = \frac{1}{2}a + bh \]
 \[\text{G} \quad A = \frac{1}{2}(a + bh) \]
 \[\text{H} \quad A = \frac{1}{2}(a + b)h \]
 \[\text{J} \quad A = \frac{1}{2}(a + b + h) \]

11. The odometer on Jenna’s car is broken. It advances 1.1 miles for every mile Jenna drives. If the odometer showed that she drove 290.4 miles since she last filled the gas tank, how many miles did she actually drive?
 \[\text{A} \quad 264 \text{ miles} \]
 \[\text{B} \quad 289.3 \text{ miles} \]
 \[\text{C} \quad 291.5 \text{ miles} \]
 \[\text{D} \quad 319.4 \text{ miles} \]

Pre-AP

Record your answers on a sheet of paper. Show your work.

12. A car company lists the stopping distances of a car at different speeds.

<table>
<thead>
<tr>
<th>Speed (ft/s)</th>
<th>Minimum Stopping Distance (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>40</td>
<td>31</td>
</tr>
<tr>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>100</td>
<td>194</td>
</tr>
</tbody>
</table>

a. Does the table of values represent a function? Explain.

b. Is this a proportional relationship? Explain.