Big Ideas
- Translate verbal sentences into equations and equations into verbal sentences.
- Solve equations and proportions.
- Find percents of change.
- Solve equations for given variables.
- Solve mixture problems and uniform motion problems.

Key Vocabulary
equivalent equations (p. 79)
identity (p. 99)
proportion (p. 105)
percent of change (p. 111)

Real-World Link
Baseball Linear equations can be used to solve problems in every facet of life. For example, a baseball player’s slugging percentage is found by using an equation based on a mixture, or weighted average, of five factors, including at bats and hits.

Foldables Study Organizer
Solving Linear Equations Make this Foldable to help you organize information about solving linear equations. Begin with 5 sheets of plain \(8\frac{1}{2}'' \times 11''\) paper.

1. Fold in half along the width.
2. Fold the bottom to form a pocket. Glue edges.
3. Repeat four times and glue all five pieces together.
4. Label each pocket. Place an index card in each pocket.
Write an algebraic expression for each verbal expression. (Lesson 1-1)

1. five greater than half a number \(t \)
2. the product of seven and \(s \) divided by the product of eight and \(y \)
3. the sum of three times \(a \) and the square of \(b \)
4. \(w \) to the fifth power decreased by 37

Evaluate each expression. (Lesson 1-2)

5. \(3 \cdot 6 - \frac{12}{4} \)
6. \(5(13 - 7) - 22 \)
7. \(5(7 - 2) - 3^2 \)
8. \(\frac{2 \cdot 6 - 4}{2} \)
9. \((25 - 4)(2^2 - 1) \)
10. \(36 \div 4 - 2 + 3 \)
11. \(\frac{19 - 5}{7} + 3 \)
12. \(\frac{1}{4}(24) - \frac{1}{2}(12) \)
13. MONEY For his birthday, Brad received $25 from each of his four aunts. After putting 10% of this money in the bank, Brad bought 5 CDs at $10 each. How much money does he have left?

Find each percent. (Prerequisite Skill)

14. Five is what percent of 20?
15. What percent of 5 is 15?
16. What percent of 300 is 21?
17. ELECTIONS In an exit poll, 456 of 900 voters said that they voted for Dunlap. Approximately what percentage of voters polled voted for Dunlap?

EXAMPLE 1
Write an algebraic expression for the phrase two more than five times a number \(t \).

\[\text{two more than five times a number } t \]
\[2 + 5 \times t \]
The expression is \(2 + 5t \).

EXAMPLE 2
Evaluate \(7 - \frac{6}{3}[5(17 - 6) + 2] + 108 \).

\[= 7 - \frac{6}{3}[5(11) + 2] + 108 \]
\[= 7 - \frac{6}{3}[55 + 2] + 108 \]
\[= 7 - \frac{6}{3}[57] + 108 \]
\[= 7 - 2[57] + 108 \]
\[= 7 - 114 + 108 \]
\[= 1 \]

EXAMPLE 3
What percent of 64 is 6?

\[\frac{a}{b} = \frac{p}{100} \]
[Use the percent proportion.]
\[\frac{6}{64} = \frac{p}{100} \]
[Replace \(a \) with 6 and \(b \) with 64.]
\[6(100) = 64p \]
[Find the cross products.]
\[600 = 64p \]
[Multiply.]
\[9.375 = p \]
[Divide each side by 64.]
6 is 9.375\% of 64.
The Statue of Liberty stands on a pedestal that is 154 feet high. The height of the pedestal and the statue is 305 feet. You can write an equation to represent this situation.

Words
The height of the pedestal and the statue is 305 feet.
Let \(s \) represent the height of the statue.

Variable
Equation
The height of the pedestal and the statue is 305 feet.
\[154 + s = 305 \]

Write Equations
When writing equations, use variables to represent the unspecified numbers or measures. Then write the verbal expressions as algebraic expressions. Some verbal expressions that suggest the equals sign are listed below:

- is
- is as much as
- is the same as
- is identical to

EXAMPLE
Translate Sentences into Equations

\(a \) squared is three times the sum of \(b \) and \(c \).

\[5 \times \frac{a}{b} = 3 \times (b + c) \]

The equation is \(5a^2 = 3(b + c) \).

b. Nine times a number subtracted from 95 equals 37.

Rewrite the sentence so it is easier to translate. Let \(n \) = the number.

\[95 - 9n = 37 \]

The equation is \(95 - 9n = 37 \).

1A. Two plus the quotient of a number and 8 is the same as 16.

1B. Twenty-seven times \(k \) is \(h \) squared decreased by 9.
Using the four-step problem-solving plan can help you solve any word problem.

KEY CONCEPT

Four-Step Problem-Solving Plan

1. **Step 1** Explore the problem.
2. **Step 2** Plan the solution.
3. **Step 3** Solve the problem.
4. **Step 4** Check the solution.

Reading Math

Verbal Problems

In a verbal problem, the sentence that tells what you are asked to find usually contains **find, what, when, or how**.

Real-World Link

The first ice cream plant was established in 1851 by Jacob Fussell. Today, 2,000,000 gallons of ice cream are produced in the United States each day.

Source: *World Book Encyclopedia*

Real-World EXAMPLE

ICE CREAM Use the information at the left. In how many days can 40,000,000 gallons of ice cream be produced in the United States?

Explore You know that 2,000,000 gallons of ice cream are produced in the United States each day. You want to know how many days it will take to produce 40,000,000 gallons of ice cream.

Plan Write an equation. Let \(d \) represent the number of days.

\[
\begin{align*}
2,000,000 & \times d = 40,000,000 \\
2,000,000 \times d & = 40,000,000
\end{align*}
\]

Solve \(2,000,000d = 40,000,000 \) \(d = 20 \) Find \(d \) mentally by asking, "What number times 2,000,000 equals 40,000,000?"

It will take 20 days to produce 40,000,000 gallons of ice cream.

Check If 2,000,000 gallons of ice cream are produced in one day, \(2,000,000 \times 20 \) or 40,000,000 gallons are produced in 20 days. The answer makes sense.

Extra Examples at algebra1.com
2. **GOVERNMENT** There are 50 members in the North Carolina Senate. This is 70 fewer than the number in the North Carolina House of Representatives. How many members are in the North Carolina House of Representatives?

A **formula** is an equation that states a rule for the relationship between certain quantities.

ALGEBRA LAB

Surface Area

- Mark each side of a rectangular box as the length \(\ell \), the width \(w \), or the height \(h \).
- Use scissors to cut the box so that each surface or face of the box is a separate piece.

ANALYZE

Write an expression for the area of each side of the box.

1. front
2. back
3. left side
4. right side
5. top
6. bottom

7. The surface area \(S \) of a rectangular box is the sum of all the areas of the faces of the box. Write a formula for the surface area of a rectangular box.

MAKE A CONJECTURE

8. If \(s \) represents the length of the side of a cube, write a formula for the surface area \(S \) of a cube.

EXAMPLE

Write a Formula

Translate the sentence into a formula. *The perimeter of a rectangle equals two times the length plus two times the width.*

<table>
<thead>
<tr>
<th>Words</th>
<th>Perimeter equals two times the length plus two times the width.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>Let (P = \text{perimeter}), (\ell = \text{length}), and (w = \text{width}).</td>
</tr>
<tr>
<td>Formula</td>
<td>[P = 2\ell + 2w]</td>
</tr>
</tbody>
</table>

The formula for the perimeter of a rectangle is \(P = 2\ell + 2w \).

Write Verbal Sentences

3. **GEOMETRY** Translate the sentence into a formula. *In a right triangle, the square of the measure of the hypotenuse \(c \) is equal to the sum of the squares of the measures of the legs, \(a \) and \(b \).*

Personal Tutor at algebra1.com

You can also translate equations into verbal sentences or make up your own verbal problem if you are given an equation.
Translate each equation into a verbal sentence.

a. \(3m + 5 = 14\)

Three times \(m\) plus five equals fourteen.

b. \(w + v = y^2\)

The sum of \(w\) and \(v\) equals the square of \(y\).

Example

Write a problem based on the given information.

\(a = \text{Rafael’s age} \quad a + 5 = \text{Tierra’s age} \quad a + 2(a + 5) = 46\)

The equation adds Rafael’s age \(a\) plus twice Tierra’s age \((a + 5)\) to get 46.

Sample problem:

Tierra is 5 years older than Rafael. The sum of Rafael’s age and twice Tierra’s age equals 46. How old is Rafael?

Check Your Progress:

5. \(p = \text{price of jeans} \quad 0.2p = \text{discount} \quad p - 0.2p = 31.20\)

Example 1 (p. 70)

Translate each sentence into an equation.

1. Twice a number \(t\) decreased by eight equals seventy.
2. Five times the sum of \(m\) and \(n\) is the same as seven times \(n\).
3. Half of \(p\) is the same as \(p\) minus three.
4. A number squared is as much as twelve more than the number.

Example 2 (p. 71)

5. **SAVINGS** Misae has $1900 in the bank. She wishes to increase her account to a total of $2500 by depositing $30 per week from her paycheck. Write and use an equation to find how many weeks she needs to reach her goal.

Example 3 (p. 72)

Translate each sentence into a formula.

6. The area \(A\) of a triangle equals one half times the base \(b\) times the height \(h\).
7. The circumference \(C\) of a circle equals the product of 2, \(\pi\), and the radius \(r\).

Example 4 (p. 72)

Translate each equation into a verbal sentence.

8. \(1 = 7 + \frac{z}{5}\)
9. \(14 + d = 6d\)
10. \(\frac{1}{3}b - 4 = 2a\)

Example 5 (p. 73)

Write a problem based on the given information.

11. \(c = \text{cost of a suit} \quad c - 25 = 150\)
12. \(p = \text{price of a new backpack} \quad 0.055p = \text{tax} \quad p + 0.055p = 31.65\)
Translate each sentence into an equation.

13. The sum of twice \(r \) and three times \(s \) is identical to thirteen.

14. The quotient of \(t \) and forty is the same as twelve minus half of \(s \).

15. Two hundred minus three times a number is equal to nine.

16. The sum of one-third a number and 25 is as much as twice the number.

17. The square of \(m \) minus the cube of \(n \) is sixteen.

18. Two times \(z \) is equal to two times the sum of \(v \) and \(w \).

19. **GEOGRAPHY** The Pacific Ocean covers about 46% of Earth. If \(P \) represents the area of the Pacific Ocean and \(E \) represents the area of Earth, write an equation for this situation.

20. **GARDENING** Mrs. Patton is planning to place a fence around her vegetable garden. The fencing costs \$1.75 per yard. She buys \(f \) yards of fencing and pays \$3.50 in tax. If the total cost is \$73.50, write an equation to represent the situation.

21. **LITERATURE** Edgar Rice Burroughs published his first *Tarzan of the Apes* story in 1912. In 1928, the California town where he lived was named Tarzana. Let \(y \) represent the number of years after 1912 that the town was named. Write and use an equation to determine the number of years between the first Tarzan story and the naming of the town.

22. **WRESTLING** Darius weighs 155 pounds. He wants to start the wrestling season weighing 160 pounds. If \(g \) represents the number of pounds he wants to gain, write an equation to represent this situation. Then use the equation to find the number of pounds Darius needs to gain.

Translate each sentence into a formula.

23. The area \(A \) of a parallelogram is the base \(b \) times the height \(h \).

24. The volume \(V \) of a pyramid is one-third times the product of the area of the base \(B \) and its height \(h \).

25. The perimeter \(P \) of a parallelogram is twice the sum of the lengths of the two adjacent sides, \(a \) and \(b \).

26. The volume \(V \) of a cylinder equals the product of \(\pi \), the square of the radius \(r \) of the base, and the height.
Translate each equation into a verbal sentence.

27. \(d - 14 = 5 \)
28. \(2f + 6 = 19 \)
29. \(k^2 + 17 = 53 - j \)
30. \(2a = 7a - b \)
31. \(\frac{3}{4}p + \frac{1}{2} = p \)
32. \(\frac{2}{5}w = \frac{1}{2}w + 3 \)

Write a problem based on the given information.

33. \(y = \) Yolanda’s height in inches
34. \(b = \) price of a book
35. \(y + 7 = \) Lindsey’s height in inches
36. \(2y + (y + 7) = 193 \)
37. \(2(b + 0.065b) = 42.49 \)

GEOMETRY For Exercises 37 and 38, use the following information.

The volume \(V \) of a cone equals one third times the product of \(\pi \), the square of the radius \(r \) of the base, and the height \(h \).

37. Write the formula for the volume of a cone.
38. Find the volume of a cone if \(r \) is 10 centimeters and \(h \) is 30 centimeters.

GEOMETRY For Exercises 39 and 40, use the following information.

The volume \(V \) of a sphere is four thirds times \(\pi \) times the radius \(r \) of the sphere cubed.

39. Write a formula for the volume of a sphere.
40. Find the volume of a sphere if \(r \) is 4 inches.

TELEVISION For Exercises 41–43, use the following information.

During a highly rated one-hour television show, the entertainment portion lasted 15 minutes longer than 4 times the advertising portion \(a \).

41. Write an expression for the entertainment portion.
42. Write an equation to represent the situation.
43. Use the guess-and-check strategy to determine the number of minutes spent on advertising.

44. GEOMETRY If \(a \) and \(b \) represent the lengths of the bases of a trapezoid and \(h \) represents its height, then the formula for the area \(A \) of the trapezoid is \(A = \frac{1}{2}h(a + b) \). Write the formula in words.

Translate each equation into a verbal sentence.

45. \(4(t - s) = 5s + 12 \)
46. \(7(x + y) = 35 \)

47. CHALLENGE The surface area of a prism is the sum of the areas of the faces of the prism. Write a formula for the surface area of the triangular prism. Explain how you organized the parts into a simplified equation.

48. OPEN ENDED Apply what you know about writing equations to write a problem about a school activity that can be answered by solving \(x + 16 = 30 \).
49. **Writing in Math** Use the information about the Statue of Liberty on page 70 to explain how equations are used to describe heights. Include an equation relating the heights of the Sears Tower, which is 1454 feet tall, the two antenna towers on top of the building, which are \(a\) feet tall, and the total height, which is 1707 feet.

50. Which equation best represents the relationship between the number of hours an electrician works \(h\) and the total charges \(c\)?

<table>
<thead>
<tr>
<th>Cost of Electrician</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>emergency house call</td>
<td>$30</td>
</tr>
<tr>
<td>rate</td>
<td>$55/h</td>
</tr>
</tbody>
</table>

A \(c = 30 + 55 \)
B \(c = 30h + 55 \)
C \(c = 30 + 55h \)
D \(c = 30h + 55h \)

51. **REVIEW** A car traveled at 55 miles per hour for 2.5 hours and then at 65 miles per hour for 3 hours. How far did the car travel in all?

- F 300.5 mi
- G 305 mi
- H 330 mi
- J 332.5 mi

52. **ENTERTAINMENT** Juanita has the volume on her stereo turned up. When her telephone rings, she turns the volume down. After she gets off the phone, she returns the volume to its previous level. Identify which graph shows the volume of Juanita’s stereo during this time. (Lesson 1-9)

Graph A
Graph B
Graph C

Find each square root. If necessary, round to the nearest hundredth. (Lesson 1-8)

53. \(\sqrt{8100} \)
54. \(-\sqrt{\frac{25}{36}} \)
55. \(\sqrt{90} \)
56. \(-\sqrt{55} \)

57. \(12d + 3 - 4d \)
58. \(7t^2 + t + 8t \)
59. \(3(a + 2b) + 5a \)

Evaluate each expression. (Lesson 1-2)

60. \(5(8 - 3) + 7 \cdot 2 \)
61. \(6(4^3 + 2) \)
62. \(7(0.2 + 0.5) - 0.6 \)

PREREQUISITE SKILL Find each sum or difference. (Pages 694–697)

63. \(0.57 + 2.8 \)
64. \(5.28 - 3.4 \)
65. \(9 - 7.35 \)

66. \(\frac{2}{3} + \frac{1}{5} \)
67. \(\frac{1}{6} + \frac{2}{3} \)
68. \(\frac{7}{9} - \frac{2}{3} \)
Algebra Lab
Solving Addition and Subtraction Equations

You can use algebra tiles to solve equations. To solve an equation means to find the value of the variable that makes the equation true. After you model the equation, the goal is to get the x-tile by itself on one side of the mat using the rules stated below.

Rules for Equation Models

<table>
<thead>
<tr>
<th>You can remove or add the same number of identical algebra tiles to each side of the mat without changing the equation.</th>
<th>![Diagram]</th>
</tr>
</thead>
<tbody>
<tr>
<td>One positive tile and one negative tile of the same unit are a zero pair. Since 1 + (−1) = 0, you can remove or add zero pairs to the equation mat without changing the equation.</td>
<td>![Diagram]</td>
</tr>
</tbody>
</table>

ACTIVITY

Use an equation model to solve \(x - 3 = 2 \).

Step 1 Model the equation.

Place 1 x-tile and 3 negative 1-tiles on one side of the mat. Place 2 positive 1-tiles on the other side of the mat. Then add 3 positive 1-tiles to each side.

\[
\begin{align*}
 x - 3 &= 2 \\
 x - 3 + 3 &= 2 + 3
\end{align*}
\]

Step 2 Isolate the x-term.

Group the tiles to form zero pairs. Then remove all the zero pairs. The resulting equation is \(x = 5 \).

Model and Analyze

Use algebra tiles to solve each equation.

1. \(x + 5 = 7 \)
2. \(x + (-2) = 8 \)
3. \(x + 4 = 5 \)
4. \(x + (-3) = 4 \)
5. \(x + 3 = -4 \)
6. \(x + 7 = 2 \)

Make a Conjecture

7. If \(a = b \), what can you say about \(a + c \) and \(b + c \)?
8. If \(a = b \), what can you say about \(a - c \) and \(b - c \)?
The graph shows some of the fastest-growing occupations from 1992 to 2005.

The percent of growth for travel agents is 5 less than the percent of growth for medical assistants. An equation can be used to find the percent of growth expected for medical assistants. If \(m \) is the percent of growth for medical assistants, then \(66 = m - 5 \). You can use a property of equality to find the value of \(m \).

Solve Using Addition Suppose the boys’ soccer team has 15 members and the girls’ soccer team has 15 members. If each team adds 3 new players, the number of members on the boys’ and girls’ teams would still be equal.

\[
\begin{align*}
15 &= 15 & \text{Each team has 15 members before adding the new players.} \\
15 + 3 &= 15 + 3 & \text{Each team adds 3 new members.} \\
18 &= 18 & \text{Each team has 18 members after adding the new members.}
\end{align*}
\]

This example illustrates the **Addition Property of Equality**.

KEY CONCEPT

Addition Property of Equality

Words If an equation is true and the same number is added to each side, the resulting equation is true.

Symbols For any numbers \(a, b, \) and \(c \), if \(a = b \), then \(a + c = b + c \).

Examples

<table>
<thead>
<tr>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>(a + c)</th>
<th>(b + c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>7</td>
<td>3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>7 + 3 = 10</td>
<td>7 + 3 = 10</td>
<td>14 + (-6) = 8</td>
<td>14 + (-6) = 8</td>
<td>10 = 10</td>
</tr>
<tr>
<td>14 = 14</td>
<td>8 = 8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
If the same number is added to each side of an equation, then the result is an equivalent equation. **Equivalent equations** have the same solution.

\[t + 3 = 5 \quad \text{The solution of this equation is 2.} \]
\[t + 3 + 4 = 5 + 4 \quad \text{Using the Addition Property of Equality, add 4 to each side.} \]
\[t + 7 = 9 \quad \text{The solution of this equation is also 2.} \]

To **solve an equation** means to find all values of the variable that make the equation a true statement. One way to do this is to isolate the variable having a coefficient of 1 on one side of the equation. You can sometimes do this by using the Addition Property of Equality.

Example

Solve by Adding

Solve each equation. Check your solution.

a. \(m - 48 = 29 \)

\[
m - 48 = 29 \quad \text{Original equation} \\
m - 48 + 48 = 29 + 48 \quad \text{Add 48 to each side.} \\
m = 77 \quad -48 + 48 = 0 \text{ and } 29 + 48 = 77
\]

To check that 77 is the solution, substitute 77 for \(m \) in the original equation.

CHECK

\[
m - 48 = 29 \quad \text{Original equation} \\
77 - 48 = 29 \quad \text{Substitute 77 for } m. \\
29 = 29 \quad \checkmark \quad \text{Subtract.}
\]

The solution 77 is correct.

b. \(21 + q = -18 \)

\[
21 + q = -18 \quad \text{Original equation} \\
21 + q + (-21) = -18 + (-21) \quad \text{Add } -21 \text{ to each side.} \\
q = -39 \quad 21 + (-21) = 0 \text{ and } -18 + (-21) = -39
\]

The solution is -39. To check, substitute -39 for \(q \) in the original equation.

Check Your Progress.

1A. \(32 = r - 8 \)
1B. \(7 = 42 + t \)

Solve Using Subtraction Similar to the Addition Property of Equality, the Subtraction Property of Equality can also be used to solve equations.

Key Concept

Subtraction Property of Equality

Words
If an equation is true and the same number is subtracted from each side, the resulting equation is true.

Symbols
For any numbers \(a, b, \) and \(c, \) if \(a = b, \) then \(a - c = b - c. \)

Examples

\[
17 = 17 \quad 3 = 3 \\
17 - 9 = 17 - 9 \quad 3 - 8 = 3 - 8 \\
8 = 8 \quad -5 = -5
\]
EXAMPLE 2 Solve by Subtracting

Solve $142 + d = 97$. Check your solution.

\[
142 + d = 97 \quad \text{Original equation}
\]

\[
142 + d - 142 = 97 - 142 \quad \text{Subtract 142 from each side.}
\]

\[
d = -45 \quad 142 - 142 = 0 \quad \text{and} \quad 97 - 142 = -45
\]

The solution is -45. To check, substitute -45 for d in the original equation.

EXAMPLE 5 Solve by Adding or Subtracting

Solve $g + \frac{3}{4} = -\frac{1}{8}$ in two ways.

Method 1 Use the Subtraction Property of Equality.

\[
g + \frac{3}{4} = -\frac{1}{8} \quad \text{Original equation}
\]

\[
g + \frac{3}{4} - \frac{3}{4} = -\frac{1}{8} - \frac{3}{4} \quad \text{Subtract} \quad \frac{3}{4} \quad \text{from each side.}
\]

\[
g = -\frac{7}{8} \quad \frac{3}{4} - \frac{3}{4} = 0 \quad \text{and} \quad -\frac{1}{8} - \frac{3}{4} = -\frac{1}{8} - \frac{6}{8} \quad \text{or} \quad -\frac{7}{8}
\]

Method 2 Use the Addition Property of Equality.

\[
g + \frac{3}{4} = -\frac{1}{8} \quad \text{Original equation}
\]

\[
g + \frac{3}{4} + \left(-\frac{3}{4} \right) = -\frac{1}{8} + \left(-\frac{3}{4} \right) \quad \text{Add} \quad -\frac{3}{4} \quad \text{to each side.}
\]

\[
g = -\frac{7}{8} \quad \frac{3}{4} + \left(-\frac{3}{4} \right) = 0 \quad \text{and} \quad -\frac{1}{8} + \left(-\frac{3}{4} \right) = -\frac{1}{8} + \left(-\frac{6}{8} \right) \quad \text{or} \quad -\frac{7}{8}
\]

4. Solve $t + 10 = 55$ in two ways.

EXAMPLE 4 Write and Solve an Equation

Write an equation for the problem. Then solve the equation.

A number increased by 5 is equal to 42. Find the number.

A number increased by 5 is equal to 42.

\[
\begin{align*}
n + 5 &= 42 \\
n + 5 - 5 &= 42 - 5 \\
n &= 37
\end{align*}
\]

The solution is 37.

4. Twenty-five is 3 less than a number. Find the number.
Lesson 2-2 Solving Equations by Using Addition and Subtraction

5. HISTORY In the fourteenth century, part of the Great Wall of China was repaired and the wall was extended. When the wall was completed, it was 2500 miles long. How much of the wall was added during the 1300s?

<table>
<thead>
<tr>
<th>Words</th>
<th>The original length plus the additional length is 2500.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Let (a) = the additional length.</td>
</tr>
</tbody>
</table>
| Equation | \[
1000 + a = 2500 \quad \text{Original equation}
\]
\[
1000 + a - 1000 = 2500 - 1000 \quad \text{Subtract 1000 from each side.}
\]
\[
a = 1500 \quad 1000 - 1000 = 0 \text{ and } 2500 - 1000 = 1500
\]

The Great Wall of China was extended 1500 miles in the 1300s.

5. DEER In a recent year, 1286 female deer were born in Lewis County. That was 93 fewer than the number of male deer born. How many male deer were born that year?

Solve each equation. Check your solution.

1. \(n - 20 = 5 \)
2. \(104 = y - 67 \)
3. \(-4 + t = -7 \)
4. \(g + 5 = 33 \)
5. \(19 + p = 6 \)
6. \(15 = b - (-65) \)
7. \(h + \frac{2}{5} = \frac{7}{10} \)
8. \(-6 = \frac{1}{4} + m \)
9. \(\frac{2}{3} + w = 1\frac{1}{2} \)

Write an equation for each problem. Then solve the equation and check your solution.

10. Twenty-one subtracted from a number is \(-8\). Find the number.
11. A number increased by 91 is 37. Find the number.
12. HISTORY Over the years, the height of the Great Pyramid at Giza, Egypt, has decreased. Use the figure to write an equation to represent the situation. Then find the decrease in the height of the pyramid.

Source: National Geographic World

Source: World Book Encyclopedia

Real-World Link

The first emperor of China, Qui Shi Huangdi, ordered the building of the Great Wall of China to protect his people from nomadic tribes that attacked and looted villages. By 204 B.C., this wall guarded 1000 miles of China’s border.

Source: National Geographic World

Examples 1–3

(pp. 79–80)

Example 4

(p. 80)

Example 5

(p. 81)
Solve each equation. Check your solution.

13. \(v - 9 = 14 \)
14. \(44 = t - 72 \)
15. \(-61 = d + (-18) \)
16. \(p + (-26) = 16 \)
17. \(18 + z = 40 \)
18. \(19 = c + 12 \)
19. \(n + 23 = 4 \)
20. \(-67 = 11 + k \)
21. \(18 - (-f) = 91 \)
22. \(88 = 125 - (-u) \)
23. \(\frac{2}{3} + r = -\frac{4}{9} \)
24. \(\frac{3}{4} = w + \frac{2}{5} \)
25. \(\frac{-1}{2} + a = \frac{5}{8} \)
26. \(\frac{-7}{10} = y - \frac{3}{5} \)

Write an equation for each problem. Then solve the equation and check your solution.

27. Eighteen subtracted from a number equals 31. Find the number.
28. What number decreased by 77 equals \(-18\)?
29. A number increased by \(-16\) is \(-21\). Find the number.
30. The sum of a number and \(-43\) is 102. What is the number?

For Exercises 31 and 32, write an equation for each situation. Then solve the equation.

31. GAS MILEAGE A midsize car with a 4-cylinder engine goes 34 miles on a gallon of gasoline. This is 10 miles more than a luxury car with an 8-cylinder engine goes on a gallon of gasoline. How many miles does a luxury car travel on a gallon of gasoline?
32. IN THE MEDIA The world’s biggest-ever passenger plane, the Airbus A380, was first used by Singapore Airlines in 2005. The following description appeared on a news Web site after the plane was introduced.

> “That airline will see the A380 transporting some 555 passengers, 139 more than a similarly set-up 747.”
Source: cnn.com

How many passengers does a similarly set-up 747 transport?

Solve each equation. Then check your solution.

33. \(k + 0.6 = -3.8 \)
34. \(8.5 + t = 7.1 \)
35. \(4.2 = q - 3.5 \)
36. \(q - 2.78 = 4.2 \)
37. \(6.2 = -4.83 + y \)
38. \(-6 = m + (-3.42) \)

Write an equation for each problem. Then solve the equation and check your solution.

39. What number minus one half is equal to negative three fourths?
40. The sum of 19 and 42 and a number is equal to 87. What is the number?
41. **Cars** The average time \(t \) it takes to manufacture a car in the United States is 24.9 hours. This is 8.1 hours longer than the average time it takes to manufacture a car in Japan. Write and solve an addition equation to find the average time to manufacture a car in Japan.

42. If \(x - 7 = 14 \), what is the value of \(x - 2 \)?

43. If \(t + 8 = -12 \), what is the value of \(t + 1 \)?

ANALYZE GRAPHS For Exercises 44–47, use the graph at the right to write an equation for each situation. Then solve the equation.

44. How many more volumes does the Library of Congress have than the Harvard University Library?

45. How many more volumes does the Harvard University Library have than the Boston Public Library?

46. How many more volumes does the Library of Congress have than the Boston Public Library?

47. What is the total number of volumes in the three largest U.S. libraries?

48. **Which One Doesn’t Belong?** Identify the equation that does not belong with the other three. Explain your reasoning.

\[
\begin{align*}
n + 14 &= 27 \\
12 + n &= 25 \\
n - 16 &= 29 \\
n - 4 &= 9
\end{align*}
\]

49. **Open Ended** Write an equation involving addition and demonstrate two ways to solve it.

50. **Challenge** If \(a - b = x \), what values of \(a, b, \) and \(x \) would make the equation \(a + x = b + x \) true? Explain your reasoning.

51. **Challenge** Determine whether each sentence is sometimes, always, or never true. Explain your reasoning.
 a. \(x + x = x \)
 b. \(x + 0 = x \)

52. **Writing in Math** Use the data about occupations on page 78 to explain how equations can be used to compare data. Include a sample problem and related equation using the information in the graph and an explanation of how to solve the equation.
53. Which problem is best represented by the equation \(w - 15 = 33? \)
 A. Jake added \(w \) ounces of water to his water bottle, which originally contained 33 ounces of water. How much water did he add?
 B. Jake added 15 ounces of water to his water bottle, for a total of 33 ounces of water. How much water \(w \) was originally in the bottle?
 C. Jake drank 15 ounces of water from his water bottle and 33 ounces were left. How much water \(w \) was originally in the bottle?
 D. Jake drank 15 ounces of water from his water bottle, which originally contained 33 ounces. How much water \(w \) was left?

54. **REVIEW** The table shows the results of a survey given to 500 international travelers. Based on the data, which statement is true?

<table>
<thead>
<tr>
<th>Vacation Plans</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Tropics</td>
<td>37</td>
</tr>
<tr>
<td>Europe</td>
<td>19</td>
</tr>
<tr>
<td>Asia</td>
<td>17</td>
</tr>
<tr>
<td>Other</td>
<td>17</td>
</tr>
<tr>
<td>No Vacation</td>
<td>10</td>
</tr>
</tbody>
</table>

F. Fifty international travelers have no vacation plans.
G. Fifteen international travelers are going to Asia.
H. One third of international travelers are going to the tropics.
J. One hundred international travelers are going to Europe.

55. Write the formula for the area of the circle.

56. If a circle has a radius of 16 inches, find its area.

57. Replace each \(\bullet \) with \(>, <, \) or \(= \) to make the sentence true. (Lesson 1-8)
 \[\frac{1}{2} \bullet \sqrt{2} \quad \frac{3}{4} \bullet \frac{2}{3} \quad 0.375 \bullet \frac{3}{8} \]

58. Identify the hypothesis and conclusion of each statement. Then write the statement in if-then form. (Lesson 1-7)
 60. There is a science quiz every Friday.
 61. For \(y = 2 \), \(4y - 6 = 2. \)

62. **SHOPPING** Shawnel bought 8 bagels at $0.95 each, 8 doughnuts at $0.80 each and 8 small cartons of milk for $1.00 each. Write and solve an expression to determine the total cost. (Lesson 1-5)

63. **PREREQUISITE SKILL** Find each product or quotient. (Pages 698–701)
 \[6.5 \times 2.8 \quad 17.8 \div 2.5 \quad \frac{2}{3} \times \frac{5}{8} \quad \frac{8}{9} \div \frac{4}{15} \]
The diagram shows the distance between Earth and each star in the Big Dipper. Light travels at a rate of about 5,870 billion miles per year. The rate or speed at which something travels times the time equals the distance it travels. The following equation can be used to find the time it takes light from the closest star in the Big Dipper to reach Earth.

\[rt = d \]

\[5870t = 311,110 \]

Solve Using Multiplication To solve equations such as the one above, you can use the **Multiplication Property of Equality**.

Example Solve Using Multiplication by a Positive Number

Solve \(\frac{t}{3} = 7 \). Check your solution.

\[
\begin{align*}
\frac{t}{3} & = 7 \quad \text{Original equation} \\
3 \left(\frac{t}{3} \right) & = 3(7) \quad \text{Multiply each side by 3.} \\
t & = 21 \\
& \quad \frac{t}{3} = t \text{ and } 7(3) = 21
\end{align*}
\]

CHECK

\[
\begin{align*}
\frac{t}{3} & = 7 \quad \text{Original equation} \\
\frac{21}{3} & = 7 \quad \text{Substitute 21 for } t.
\end{align*}
\]

\[7 = 7 \checkmark \quad \text{The solution is 21.} \]

Check Your Progress

Solve each equation. Check your solution.

1A. \(18 = \frac{w}{2} \)

1B. \(\frac{n}{3} = \frac{-2}{5} \)
EXAMPLE Solve Using Multiplication by a Fraction

Solve each equation.

a. \((2 \frac{1}{4}) g = \frac{1}{2}\)

\[
\left(2 \frac{1}{4}\right) g = \frac{1}{2}
\]

Original equation

\[
\left(\frac{9}{4}\right) g = \frac{1}{2}
\]

Rewrite the mixed number as an improper fraction.

\[
\frac{4}{9} \left(\frac{9}{4}\right) g = \frac{4}{9} \left(\frac{1}{2}\right)
\]

Multiply each side by \(\frac{4}{9}\), the reciprocal of \(\frac{9}{4}\).

\[
g = \frac{2}{9}
\]

Check this result.

b. \(42 = -6m\)

\[
42 = -6m
\]

Original equation

\[
-\frac{1}{6}(42) = -\frac{1}{6}(-6m)
\]

Multiply each side by \(-\frac{1}{6}\), the reciprocal of \(-6\).

\[
-7 = m
\]

Check this result.

Check Your Progress

2A. \(\frac{3}{5}k = 6\)

2B. \(-\frac{1}{4} = \frac{2}{3}b\)

Real-World EXAMPLE

SPACE TRAVEL Refer to the information at the left. An item’s weight on the Moon is about one sixth its weight on Earth. What was the weight of Neil Armstrong’s suit and life-support backpacks on Earth?

Source: NASA

Real-World Link

Source: NASA

Words

One sixth times the weight on Earth equals the weight on the Moon.

Variables

Let \(w\) = the weight on Earth.

Equation

\[
\frac{1}{6} \cdot w = 33
\]

Original equation

\[
6 \left(\frac{1}{6}\right) = 6(33)
\]

Multiply each side by 6.

\[
w = 198
\]

\[
\frac{1}{6}(6) = 1 and 33(6) = 198
\]

Neil Armstrong’s suit and backpacks were about 198 pounds on Earth.

Check Your Progress

3. SURVEYS In a recent survey of 13- to 15-year-old girls, 225, or about \(\frac{9}{20}\) of those surveyed, said they talk on the telephone while they watch television. About how many girls were surveyed?

Personal Tutor at algebra1.com
Solve Using Division In Example 2b, the equation $42 = -6m$ was solved by multiplying each side by $-\frac{1}{6}$. The same result could have been obtained by dividing each side by -6. This method uses the **Division Property of Equality**.

KEY CONCEPT

Division Property of Equality

<table>
<thead>
<tr>
<th>Words</th>
<th>If an equation is true and each side is divided by the same non-zero number, the resulting equation is true.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Symbols</td>
<td>For any numbers a, b, and c with $c \neq 0$, if $a = b$, then $\frac{a}{c} = \frac{b}{c}$.</td>
</tr>
</tbody>
</table>
| Examples | $15 = 15$
$15 \div 15 = 15$
$5 = 5$ |

EXAMPLE

Solve Using Division

Solve each equation. Check your solution.

a. $13s = 195$

\[
\begin{align*}
13s &= 195 & \text{Original equation} \\
\frac{13s}{13} &= \frac{195}{13} & \text{Divide each side by } 13. \\
s &= 15 & \text{Check this result.}
\end{align*}
\]

CHECK

\[
\begin{align*}
13s &= 195 & \text{Original equation} \\
13(15) &= 195 & \text{Substitute } 15 \text{ for } s. \\
195 &= 195 & \text{Multiply.}
\end{align*}
\]

b. $-3x = 12$

\[
\begin{align*}
-3x &= 12 & \text{Original equation} \\
\frac{-3x}{-3} &= \frac{12}{-3} & \text{Divide each side by } -3. \\
x &= -4 & \text{Check this result.}
\end{align*}
\]

CHECK

\[
\begin{align*}
-3x &= 12 & \text{Original equation} \\
-3(-4) &= 12 & \text{Substitute } -4 \text{ for } x. \\
12 &= 12 & \text{Multiply.}
\end{align*}
\]

Study Tip

Alternative Method

You can also solve equations like those in Examples 4 and 5 by using the Multiplication Property of Equality. For instance, in Example 4b, you could multiply each side by $-\frac{1}{3}$.

EXAMPLE

Write and Solve an Equation Using Division

Write an equation for the problem below. Then solve the equation.

Negative eighteen times a number equals -198.

\[
-18 \times n = -198
\]

\[
\begin{align*}
-18n &= -198 & \text{Original equation} \\
\frac{-18n}{-18} &= \frac{-198}{-18} & \text{Divide each side by } -18. \\
n &= 11 & \text{Check this result.}
\end{align*}
\]

5. Write an equation for the following problem. Then solve the equation.

Negative forty-two equals the product of six and a number.

\[
-42 = 6n
\]

\[
\begin{align*}
-42 &= 6n & \text{Original equation} \\
\frac{-42}{6} &= \frac{6n}{6} & \text{Divide each side by } 6. \\
-7 &= n & \text{Check this result.}
\end{align*}
\]
Examples 1 and 2
(pp. 85–86)
Solve each equation. Check your solution.
1. \(\frac{t}{7} = -5 \)
2. \(\frac{a}{36} = \frac{4}{9} \)
3. \(\frac{2}{3}n = 10 \)
4. \(\frac{8}{9} = \frac{4}{5}k \)
5. \(12 = \frac{x}{-3} \)
6. \(-\frac{r}{4} = \frac{1}{7} \)

Example 3
(p. 86)
7. GEOGRAPHY The discharge of a river equals the product of its width, its average depth, and its speed. At one location in St. Louis, the Mississippi River is 533 meters wide, its speed is 0.6 meter per second, and its discharge is 3198 cubic meters per second. How deep is the Mississippi River at this location?

Example 4
(p. 87)
Solve each equation. Check your solution.
8. \(8t = 72 \)
9. \(20 = 4w \)
10. \(45 = -9a \)
11. \(-2g = -84 \)

Example 5
(p. 87)
Write an equation for each problem. Then solve the equation.
12. Five times a number is 120. What is the number?
13. One third equals negative seven times a number. What is the number?

Exercises
Solve each equation. Check your solution.
14. \(\frac{x}{9} = 10 \)
15. \(\frac{b}{7} = -11 \)
16. \(\frac{3}{4} = \frac{c}{24} \)
17. \(\frac{2}{3} = \frac{1}{8}y \)
18. \(\frac{2}{3}n = 14 \)
19. \(\frac{3}{5}x = -6 \)
20. \(4\frac{1}{5} = 3p \)
21. \(-5 = 3\frac{1}{2}x \)
22. \(6 = -\frac{1}{2}n \)
23. \(-\frac{2}{5} = -\frac{z}{45} \)
24. \(-\frac{8}{24} = \frac{5}{12} \)
25. \(-\frac{v}{5} = -45 \)

26. GENETICS About two twenty-fifths of the male population in the world cannot distinguish red from green. If there are 14 boys in the ninth grade that cannot distinguish red from green, about how many ninth-grade boys are there in all? Write and solve an equation to find the answer.

27. WORLD RECORDS In 1998, Winchell’s House of Donuts in Pasadena, California, created the world’s largest doughnut. It weighed 2.5 tons and had a circumference of about 298.5 feet. What was its diameter?
(Hint: \(C = \pi d \))

Solve each equation. Check your solution.
28. \(8d = 48 \)
29. \(-65 = 13t \)
30. \(-5r = 55 \)
31. \(-252 = 36s \)
32. \(-58 = -29h \)
33. \(-26a = -364 \)

88 Chapter 2 Solving Linear Equations
Write an equation for each problem. Then solve the equation.
34. Seven times a number equals –84. What is the number?
35. Two fifths of a number equals –24. Find the number.
36. Negative 117 is nine times a number. Find the number.
37. Twelve is one fifth of a number. What is the number?

Solve each equation. Check your solution.
38. \(\left(\frac{3}{4} \right) p = \frac{9}{2} \)
39. \(-5h = -\frac{2}{3}\)
40. \(-\frac{3}{2}t = -22\)
41. \(3.15 = 1.5y\)
42. \(-11.78 = 1.9f\)
43. \(-2.8m = 9.8\)

Write an equation for each problem. Then solve the equation.
44. Negative three eighths times a number equals 12. What is the number?
45. Two and one half times a number equals one and one fifth. Find the number.
46. One and one third times a number is –4.82. What is the number?

BASEBALL For Exercises 47 and 48, use the following information.
In baseball, if all other factors are the same, the speed of a four-seam fastball is faster than a two-seam fastball. The distance from the pitcher’s mound to home plate is 60.5 feet.

47. How long does it take a two-seam fastball to go from the pitcher’s mound to home plate? Round to the nearest hundredth. (Hint: \(d = rt\))
48. How much longer does it take for a two-seam fastball to reach home plate than a four-seam fastball?

PHYSICAL SCIENCE For Exercises 49–51, use the following information.
For every 8 grams of oxygen in water, there is 1 gram of hydrogen. In science lab, Ayame and her classmates are asked to determine how many grams of hydrogen and oxygen are in 477 grams of water.

49. If \(x\) represents the number of grams of hydrogen, write an expression to represent the number of grams of oxygen.
50. Write an equation to represent the situation.
51. How many grams of hydrogen and oxygen are in 477 grams of water?

H.O.T. Problems
52. OPEN ENDED Write a multiplication equation that has a solution of –4. Then relate the equation and solution to a real-life problem.
53. REASONING Compare and contrast the Multiplication Property of Equality and the Division Property of Equality and explain why they can be considered the same property.
54. CHALLENGE Discuss how you can use \(6y - 7 = 4\) to find the value of \(18y - 21\). Then find the value of \(y\).
55. **FIND THE ERROR** Casey and Camila are solving $8n = -72$. Who is correct? Explain your reasoning.

Casey

\[8n = -72 \]
\[8n(8) = -72(8) \]
\[n = -576 \]

Camila

\[8n = -72 \]
\[\frac{8n}{8} = \frac{-72}{8} \]
\[n = -9 \]

56. **Writing in Math** Use the data about light speed on page 85 to explain how equations can be used to find how long it takes light to reach Earth. Include an explanation of how to find how long it takes light to reach Earth from the closest star in the Big Dipper and an equation describing the situation for the star in the Big Dipper farthest from Earth.

57. **REVIEW** Which is the best estimate for the number of minutes on the calling card advertised below?

$\$10 Prepaid Calling Card
Only 5.4\$ per minute

A 10 min C 50 min
B 20 min D 200 min

58. **REVIEW** Mr. Morisson is draining his cylindrical, above ground pool. The pool has a radius of 10 feet and a standard height of 4.5 feet. If the pool water is pumped out at a constant rate of 5 gallons per minute, about how long will it take to drain the pool? (1 ft3 = 7.5 gal)

F 37.8 min G 7 h
H 25.4 h J 35.3 h

59. Solve each equation. Check your solution. (Lesson 2-2)

59. $m + 14 = 81$

60. $d - 27 = -14$

61. $17 - (-w) = -55$

62. Translate the following sentence into an equation. (Lesson 2-1)

Ten times a number a is equal to 5 times the sum of b and c.

63. **MUSIC** Ryan practiced playing his violin 40 minutes on Monday and n minutes each on Tuesday, Wednesday, and Thursday. Write an expression for the total amount of time that he practiced during those four days. (Lesson 1-1)

64. **PREREQUISITE SKILL** Use the order of operations to find each value. (Lesson 1-2)

64. $9 + 2 \times 8$

65. $24 \div 3 - 8$

66. $\frac{3}{8}(17 + 7)$

67. $\frac{15 - 9}{26 + 12}$
You can use an equation model to solve multi-step equations.

ACTIVITY

Solve \(3x + 5 = -7\).

Step 1 Model the equation.

Place 3 \(x\)-tiles and 5 positive 1-tiles on one side of the mat. Place 7 negative 1-tiles on the other side of the mat.

Step 2 Isolate the \(x\)-term.

Since there are 5 positive 1-tiles with the \(x\)-tiles, add 5 negative 1-tiles to each side to form zero pairs.

Step 3 Remove zero pairs.

Group the tiles to form zero pairs and remove the zero pairs.

Step 4 Group the tiles.

Separate the tiles into 3 equal groups to match the 3 \(x\)-tiles. Each \(x\) tile is paired with 4 negative 1 tiles. Thus, \(x = -4\).

MODEL Use algebra tiles to solve each equation.

1. \(2x - 3 = -9\)
2. \(3x + 5 = 14\)
3. \(3x - 2 = 10\)
4. \(-8 = 2x + 4\)
5. \(3 + 4x = 11\)
6. \(2x + 7 = 1\)
7. \(9 = 4x - 7\)
8. \(7 + 3x = -8\)
9. \(3x - 1 = -10\)

10. **MAKE A CONJECTURE** What steps would you use to solve \(7x - 12 = -61\)?
Solving Multi-Step Equations

Main Ideas
- Solve equations involving more than one operation.
- Solve consecutive integer problems.

New Vocabulary
- multi-step equations
- consecutive integers
- number theory

An alligator hatchling 8 inches long grows about 12 inches per year. The expression $8 + 12a$ represents the length in inches of an alligator that is a years old.

Since 10 feet 4 inches equals 10(12) + 4 or 124 inches, the equation $8 + 12a = 124$ can be used to estimate the age of the alligator in the photograph. Notice that this equation involves more than one operation.

Solve Multi-Step Equations To solve equations with more than one operation, often called multi-step equations, undo operations by working backward.

EXAMPLE Solve Using Addition and Division

Solve $7m - 17 = 60$. Check your solution.

- Original equation $7m - 17 = 60$
- Add 17 to each side $7m = 77$
- Divide each side by 7 $m = 11$

CHECK $7m - 17 = 60$
- Substitute 11 for m
- Multiply $60 = 60$ ✓

Solve each equation. Check your solution.

1A. $2a - 6 = 4$
1B. $8 = 3r + 7$
1C. $\frac{t}{8} + 21 = 14$
EXAMPLE Solve Using Multiplication and Addition

2. Solve \(\frac{p - 15}{9} = -6 \).

\[
\frac{p - 15}{9} = -6 \\
9 \left(\frac{p - 15}{9} \right) = 9(-6) \\
p - 15 = -54 \\
p - 15 + 15 = -54 + 15 \\
p = -39
\]

Check Your Progress: Solve each equation. Check your solution.

2A. \(\frac{k - 12}{5} = 4 \)
2B. \(\frac{n + 1}{-2} = 15 \)

Real-World EXAMPLE Write and Solve a Multi-Step Equation

SKIING Hugo is buying a pair of water skis that are on sale for \(\frac{2}{3} \) of the original price. After he uses a $25 gift certificate, the total cost before taxes is $115. What was the original price of the skis? Write an equation for the problem. Then solve the equation.

<table>
<thead>
<tr>
<th>Words</th>
<th>Two-thirds of the price minus 25 is 115.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
<td>Let (p) = original price of the skis.</td>
</tr>
<tr>
<td>Equation</td>
<td>(\frac{2}{3} p - 25 = 115)</td>
</tr>
</tbody>
</table>

\[
\frac{2}{3} p - 25 = 115 \\
\frac{2}{3} p - 25 + 25 = 115 + 25 \\
\frac{2}{3} p = 140 \\
\frac{3}{2} \left(\frac{2}{3} p \right) = \frac{3}{2}(140) \\
p = 210
\]

The original price of the skis was $210.

3. Write an equation for the following problem. Then solve the equation. *Sixteen is equal to 7 increased by the product of 3 and a number.*
Solve Consecutive Integer Problems Consecutive integers are integers in counting order, such as 7, 8, and 9. Beginning with an even integer and counting by two will result in consecutive even integers. Beginning with an odd integer and counting by two will result in consecutive odd integers.

<table>
<thead>
<tr>
<th>Consecutive Even Integers</th>
<th>Consecutive Odd Integers</th>
</tr>
</thead>
<tbody>
<tr>
<td>-4, -2, 0, 2, 4</td>
<td>-3, -1, 1, 3, 5</td>
</tr>
</tbody>
</table>

The study of numbers and the relationships between them is called **number theory**.

EXAMPLE: Solve a Consecutive Integer Problem

NUMBER THEORY Write an equation for the problem below. Then solve the equation and answer the problem.

Find three consecutive even integers whose sum is −42.

Let \(n \) = the least even integer.

Then \(n + 2 \) = the next greater even integer, and \(n + 4 \) = the greatest of the three even integers.

Words

The sum of three consecutive even integers is \(-42\).

Equation

\[
\begin{align*}
\text{Words} & : \text{The sum of three consecutive even integers} \\
\text{Equation} & : n + (n + 2) + (n + 4) = -42
\end{align*}
\]

\[
\begin{align*}
n + (n + 2) + (n + 4) &= -42 & \text{Original equation} \\
3n + 6 &= -42 & \text{Simplify.} \\
3n + 6 - 6 &= -42 - 6 & \text{Subtract 6 from each side.} \\
3n &= -48 & \text{Simplify.} \\
\frac{3n}{3} &= \frac{-48}{3} & \text{Divide each side by 3.} \\
n &= -16 & \text{Simplify.}
\end{align*}
\]

\[
\begin{align*}
n + 2 &= -16 + 2 \text{ or } -14 & n + 4 &= -16 + 4 \text{ or } -12
\end{align*}
\]

The consecutive even integers are \(-16, -14,\) and \(-12\).

CHECK

\(-16, -14,\) and \(-12\) are consecutive even integers.
\(-16 + (-14) + (-12) = -42\)

Check Your Progress

4. Write an equation for the following problem. Then solve the equation and answer the problem.

Find three consecutive integers whose sum is 21.
Solve each equation. Check your solution.

1. \(4g - 2 = -6\)
2. \(18 = 5p + 3\)
3. \(9 = 1 + \frac{m}{7}\)
4. \(\frac{3}{2}u - 8 = 11\)
5. \(20 = n - \frac{3}{8}\)
6. \(\frac{b + 4}{-2} = -17\)

7. **NUMBER THEORY** Twelve decreased by twice a number equals \(-34\). Write an equation for this situation and then find the number.

8. **WORLD CULTURES** The English alphabet contains 2 more than twice as many letters as the Hawaiian alphabet. How many letters are there in the Hawaiian alphabet?

Write an equation and solve each problem.

9. Find three consecutive integers with a sum of 42.
10. Find three consecutive even integers with a sum of \(-12\).

Write an equation and solve each problem.

23. Six less than two thirds of a number is negative ten. Find the number.
24. Twenty-nine is thirteen added to four times a number. What is the number?
25. Find three consecutive odd integers with a sum of 51.
26. Find three consecutive even integers with a sum of \(-30\).
27. Find four consecutive integers with a sum of 94.

29. **ANALYZE TABLES** Adele Jones is on a business trip and plans to rent a subcompact car from Speedy Rent-A-Car. Her company has given her a budget of $60 per day for car rental. What is the maximum distance Ms. Jones can drive in one day and still stay within her budget?

Speedy Rent-A-Car Price List

- **Subcompact**: $14.95 per day plus $0.10 per mile
- **Compact**: $19.95 per day plus $0.12 per mile
- **Full Size**: $22.95 per day plus $0.15 per mile

Lesson 2-4 Solving Multi-Step Equations 95
Write an equation and solve each problem.

30. **NUMBER THEORY** Maggie was thinking of a number. If she multiplied the number by 3, subtracted 8, added 2 times the original number, added −4, and then subtracted the original number, the result was 48. Write an equation that the number satisfies. Then solve the equation.

Real-World Link

Many mountain climbers experience altitude sickness caused by a decrease in oxygen. Climbers can acclimate themselves to these higher altitudes by camping for one or two weeks at various altitudes as they ascend the mountain.

Source: *Shape*

31. **MOUNTAIN CLIMBING** A general rule for those climbing more than 7000 feet above sea level is to allow a total of \(\left(\frac{a - 7000}{2000} + 2 \right) \) weeks of camping during the ascension. In this expression, \(a \) represents the altitude in feet. If a group of mountain climbers have allowed for 9 weeks of camping, how high can they climb without worrying about altitude sickness?

Solve each equation. Check your solution.

32. \(-3d - 1.2 = 0.9\)
33. \(-2.5r - 32.7 = 74.1\)
34. \(0.2n + 3 = 8.6\)
35. \(-9 - \frac{p}{4} = 5\)
36. \(-3j - (-4) = 12\)
37. \(3.5x + 5 - 1.5x = 8\)

38. If \(3a - 9 = 6\), what is the value of \(5a + 2\)?
39. If \(2x + 1 = 5\), what is the value of \(3x - 4\)?

SHOE SIZE For Exercises 40 and 41, use the following information. If \(\ell\) represents the length of a person’s foot in inches, the expression \(2\ell - 12\) can be used to estimate his or her shoe size.

40. What is the approximate length of the foot of a person who wears size 8?
41. Measure your foot and use the expression to determine your shoe size. How does this number compare to the size of shoe you are wearing?

42. **GEOMETRY** A rectangle is cut from the corner of a 10-inch by 10-inch piece of paper. The area of the remaining piece of paper is \(\frac{4}{5}\) of the area of the original piece of paper. If the width of the rectangle removed from the paper is 4 inches, what is the length of the rectangle?

43. **OPEN ENDED** Write a problem that can be modeled by the equation \(2x + 40 = 60\). Then solve the equation and explain the solution in the context of the problem.

44. **REASONING** Describe the steps used to solve \(\frac{w + 3}{5} - 4 = 6\).

45. **CHALLENGE** Determine whether the following statement is sometimes, always, or never true. Explain your reasoning.

The sum of two consecutive even numbers equals the sum of two consecutive odd numbers.

46. **Writing in Math** Use the information about alligators on page 92 to explain how equations can be used to estimate the age of an animal. Include an explanation of how to solve the equation representing the alligator and an estimate of the age of the alligator.
47. **REVIEW** A hang glider 25 meters above the ground started to descend at a constant rate of 2 meters per second. Which equation could be used to determine \(h \), the hang glider’s height after \(t \) seconds of descent?

A. \(h = 25t + 2 \)
B. \(h = -25t + 2 \)
C. \(h = 2t + 25 \)
D. \(h = -2t + 25 \)

48. **REVIEW** Two rectangular walls each with a length of 12 feet and a width of 23 feet need to be painted. It costs $0.08 per square foot for paint. How much money will it cost to paint the two walls?

F. $22.08
H. $34.50
G. $23.04
J. $44.16

49. Maddie works at Game Exchange. They are having a sale on video games and DVDs.

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
<th>Special</th>
</tr>
</thead>
<tbody>
<tr>
<td>Video Games</td>
<td>$20</td>
<td>Buy 2 Get 1 Free</td>
</tr>
<tr>
<td>DVDs</td>
<td>$15</td>
<td>Buy 1 Get 1 Free</td>
</tr>
</tbody>
</table>

She purchases four video games and uses her employee discount of 15%. If sales tax is 7.25%, how much does she spend on the games?

A. $54.70
B. $55.35
C. $60
D. $64.35

50. \(-7t = 91\)

51. \(\frac{r}{15} = -8\)

52. \(26 = \frac{2}{3}b\)

53. **TRANSPORTATION** In 2005, there were 9 more models of sport utility vehicles than there were in 2000. Write and solve an equation to find how many models of sport utility vehicles there were in 2000.

54. \(17 \cdot 9\)

55. \(13(101)\)

56. \(18 \cdot \frac{21}{9}\)

Write an algebraic expression for each verbal expression.

57. the product of 5 and \(m \) plus half of \(n \)
58. the sum of 3 times \(a \) and the square of \(b \)

PREREQUISITE SKILL Simplify each expression.

59. \(5d - 2d\)

60. \(11m - 5m\)

61. \(8t + 6t\)

62. \(7g - 15g\)

63. \(-9f + 6f\)

64. \(-3m + (-7m)\)
Solving Equations with the
Variable on Each Side

In 2003, about 46.9 million U.S. households had dial-up Internet service and about 26 million had broadband service. During the next five years, it was projected that the number of dial-up users would decrease an average of 3 million per year and the number of broadband users would increase an average of 8 million per year. The following expressions represent the number of dial-up and broadband Internet users \(x \) years after 2003.

Dial-Up Internet Users: \(46.9 - 3x \)

Broadband Internet Users: \(26 + 8x \)

The equation \(46.9 - 3x = 26 + 8x \) represents the time at which the number of dial-up and broadband Internet users are equal. Notice that this equation has the variable \(x \) on each side.

Variables On Each Side To solve equations with variables on each side, first use the Addition or Subtraction Property of Equality to write an equivalent equation that has all of the variables on one side.

EXAMPLE Solve an Equation with Variables on Each Side

Solve \(-2 + 10p = 8p - 1 \). Check your solution.

\[
\begin{align*}
-2 + 10p &= 8p - 1 \\
-2 + 10p - 8p &= 8p - 1 - 8p \\
-2 + 2p + 2 &= -1 + 2 \\
2p &= 1 \\
\frac{2p}{2} &= \frac{1}{2} \\
p &= \frac{1}{2} \text{ or } 0.5
\end{align*}
\]

The solution is \(\frac{1}{2} \) or 0.5. Check by substituting into the original equation.

CHECK Your Progress

Solve each equation. Check your solution.

1A. \(3w + 2 = 7w \)

1B. \(\frac{s}{2} + 1 = \frac{1}{4} - 6 \)
Grouping Symbols When solving equations that contain grouping symbols, first use the Distributive Property to remove the grouping symbols.

EXAMPLE Solve an Equation with Grouping Symbols

Solve \(4(2r - 8) = \frac{1}{7}(49r + 70)\). Check your solution.

\[
\begin{align*}
4(2r - 8) &= \frac{1}{7}(49r + 70) & \text{Original equation} \\
8r - 32 &= 7r + 10 & \text{Distributive Property} \\
8r - 32 - 7r &= 7r + 10 - 7r & \text{Subtract } 7r \text{ from each side.} \\
r - 32 &= 10 & \text{Simplify.} \\
r &= 42 & \text{Add } 32 \text{ to each side.}
\end{align*}
\]

CHECK

\[
\begin{align*}
4(2r - 8) &= \frac{1}{7}(49r + 70) & \text{Original equation} \\
4[2(42) - 8] &= \frac{1}{7}[49(42) + 70] & \text{Substitute } 42 \text{ for } r. \\
4(84 - 8) &= \frac{1}{7}(2058 + 70) & \text{Multiply.} \\
4(76) &= \frac{1}{7}(2128) & \text{Add and subtract.} \\
304 &= 304 & \checkmark
\end{align*}
\]

CHECK Your Progress Solve each equation. Check your solution.

2A. \(8s - 10 = 3(6 - 2s)\) **2B.** \(7(n - 1) = -2(3 + n)\)

Some equations may have no solution. That is, there is no value of the variable that will result in a true equation. Other equations are true for all values of the variables. An equation like this is called an **identity**.

EXAMPLE No Solutions or Identity

Solve each equation.

a. \(2m + 5 = 5(m - 7) - 3m\)

\[
\begin{align*}
2m + 5 &= 5(m - 7) - 3m & \text{Original equation} \\
2m + 5 &= 5m - 35 - 3m & \text{Distributive Property} \\
2m + 5 &= 2m - 35 & \text{Simplify.} \\
2m + 5 - 2m &= 2m - 35 - 2m & \text{Subtract } 2m \text{ from each side.} \\
5 &= -35 & \text{This statement is false.}
\end{align*}
\]

Since \(5 = -35\) is a false statement, this equation has no solution.

b. \(3(r + 1) - 5 = 3r - 2\)

\[
\begin{align*}
3(r + 1) - 5 &= 3r - 2 & \text{Original equation} \\
3r + 3 - 5 &= 3r - 2 & \text{Distributive Property} \\
3r - 2 &= 3r - 2 & \text{Reflexive Property of Equality}
\end{align*}
\]

Since the expressions on each side of the equation are the same, this equation is an identity. It is true for all values of \(r\).
Solve each equation.

3A. \(7x + 5(x - 1) = -5 + 12x\)
3B. \(6(y - 5) = 2(10 + 3y)\)

Concept Summary

Steps for Solving Equations

1. **Step 1** Simplify the expressions on each side. Use the Distributive Property as needed.
2. **Step 2** Use the Addition and/or Subtraction Properties of Equality to get the variables on one side and the numbers without variables on the other side. Simplify.
3. **Step 3** Use the Multiplication or Division Property of Equality to solve.

Standardized Test Example

Find the value of \(x\) so that the figures have the same area.

- A. 5
- B. 6
- C. 7
- D. 8

Read the Test Item

The equation \(10x = \frac{1}{2}(14 + x)(6)\) represents this situation.

Solve the Test Item

You can solve the equation or substitute each value into the equation and see if it makes the equation true. We will solve by substitution.

- **A** \(10x = \frac{1}{2}(14 + x)(6)\)
 - \(10(5) = \frac{1}{2}(14 + 5)(6)\)
 - \(50 = \frac{1}{2}(19)(6)\)
 - \(50 \neq 57\)

- **B** \(10x = \frac{1}{2}(14 + x)(6)\)
 - \(10(6) = \frac{1}{2}(14 + 6)(6)\)
 - \(60 = \frac{1}{2}(20)(6)\)
 - \(60 = 60\)

Since the value 6 results in a true statement, you do not need to check 7 and 8. The answer is B.

Shopping

4. **SHOPPING** A purse is on sale for one fourth off the original price, or $12 off. What was the original price of the purse?

- F. $12
- G. $36
- H. $48
- J. $60

Personal Tutor at algebra1.com
Solve each equation. Check your solution.
1. \[20c + 5 = 5c + 65\]
2. \[\frac{3}{8} - \frac{1}{4}t = \frac{1}{2}t - \frac{3}{4}\]
3. \[3(a - 5) = -6\]
4. \[6 = 3 + 5(d - 2)\]

5. NUMBER THEORY Four times the greater of two consecutive integers is 1 more than five times the lesser number. Find the integers.

Solve each equation. Check your solution.
6. \[5 + 2(n + 1) = 2n\]
7. \[7 - 3r = r - 4(2 + r)\]
8. \[14v + 6 = 2(5 + 7v) - 4\]
9. \[5h - 7 = 5(h - 2) + 3\]

10. STANDARDIZED TEST EXAMPLE
Find the value of \(x\) so that the figures have the same perimeter.

A 4 C 6
B 5 D 7

Solve each equation. Check your solution.
11. \[3k - 5 = 7k - 21\]
12. \[5t - 9 = -3t + 7\]
13. \[8s + 9 = 7s + 6\]
14. \[3 - 4q = 10q + 10\]
15. \[\frac{3}{4}n + 16 = 2 - \frac{1}{8}n\]
16. \[\frac{1}{4} - \frac{2}{3}y = \frac{3}{4} - \frac{1}{3}y\]
17. \[\frac{c + 1}{8} = \frac{c}{4}\]
18. \[\frac{3m - 2}{5} = \frac{7}{10}\]
19. \[8 = 4(3c + 5)\]
20. \[7(m - 3) = 7\]
21. \[6(r + 2) - 4 = -10\]
22. \[5 - \frac{1}{2}(x - 6) = 4\]
23. \[4(2a - 1) = -10(a - 5)\]
24. \[2(w - 3) + 5 = 3(w - 1)\]

25. One half of a number increased by 16 is four less than two thirds of the number. Find the number.
26. The sum of one half of a number and 6 equals one third of the number. What is the number?
27. Two less than one third of a number equals 3 more than one fourth of the number. Find the number.
28. Two times a number plus 6 is three less than one fifth of the number. What is the number?

29. NUMBER THEORY Twice the greater of two consecutive odd integers is 13 less than three times the lesser number. Find the integers.
30. NUMBER THEORY Three times the greatest of three consecutive even integers exceeds twice the least by 38. What are the integers?

Solve each equation. Check your solution.
31. \[4(f - 2) = 4f\]
32. \[\frac{3}{2}y - y = 4 + \frac{1}{2}y\]
33. \[3(1 + d) - 5 = 3d - 2\]
34. \[-3(2n - 5) = 0.5(-12n + 30)\]
35. **HEALTH** When exercising, a person’s pulse rate should not exceed a certain limit. This maximum rate is represented by the expression $0.8(220 - a)$, where a is age in years. Find the age of a person whose maximum pulse is 152.

36. **HARDWARE** Traditionally, nails are given names such as 2-penny, 3-penny, and so on. These names describe the lengths of the nails. Use the diagram to find the name of a nail that is $2\frac{1}{2}$ inches long.

Source: World Book Encyclopedia

Solve each equation. Check your solution.

37. \[\frac{1}{4}(7 + 3g) = -\frac{3g}{8} \]
38. \[\frac{1}{6}(a - 4) = \frac{1}{3}(2a + 4) \]
39. \[1.03p - 4 = -2.15p + 8.72 \]
40. \[18 - 3.8t = 7.36 - 1.9t \]
41. \[5.4w + 8.2 = 9.8w - 2.8 \]
42. \[2[s + 3(s - 1)] = 18 \]

43. **ANALYZE TABLES** The table shows the households that had Brand A and Brand B of personal computers in a recent year and the average growth rates. How long will it take for the two brands to be in the same number of households?

<table>
<thead>
<tr>
<th>Brand of Computer</th>
<th>Millions of Households with Computer</th>
<th>Growth Rate (million households per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>4.9</td>
<td>0.275</td>
</tr>
<tr>
<td>B</td>
<td>2.5</td>
<td>0.7</td>
</tr>
</tbody>
</table>

44. **GEOMETRY** The rectangle and square shown at right have the same perimeter. Find the dimensions of each figure.

45. **CHALLENGE** Write an equation that has one or more grouping symbols, the variable on each side of the equals sign, and a solution of -2. Discuss the steps you used to write the equation.

46. **OPEN ENDED** Find a counterexample to the statement *All equations have a solution*. Explain your reasoning.

47. **REASONING** Determine whether each solution is correct. If the solution is not correct, describe the error and give the correct solution.

 a. \[2(g + 5) = 22 \]
 \[2g + 5 - 5 = 22 - 5 \]
 \[2g = 17 \]
 \[g = 8.5 \]

 b. \[5d = 2d - 18 \]
 \[5d - 2d = 2d - 18 - 2d \]
 \[3d = -18 \]
 \[d = -6 \]

48. **Writing in Math** Use the information about Internet users on page 98 to explain how an equation can be used to determine when two populations are equal. Include the steps for solving the equation and the year when the number of dial-up Internet users will equal the number of broadband Internet users according to the model. Explain why this method can be used to predict events.
49. Which equation represents the second step of the solution process?

 - Step 1 4(2x + 7) - 6 = 3x
 - Step 2 __________________________
 - Step 3 5x + 28 - 6 = 0
 - Step 4 5x = -22
 - Step 5 x = -4.4
 A 4(2x - 6) + 7 = 3x
 B 4(2x + 1) = 3x
 C 8x + 7 - 6 = 3x
 D 8x + 28 - 6 = 3x

50. REVIEW Tanya sells cosmetics door-to-door. She makes $5 an hour and 15% commission on the total dollar value on whatever she sells. If Tanya’s commission is increased to 17%, how much money will she make if she sells $300 dollars worth of product and works 30 hours?

 F $201
 G $226
 H $255
 J $283

Solve each equation. Check your solution. (Lesson 2-4)

51. \(\frac{2}{9}v - 6 = 14 \)

52. \(\frac{x - 3}{7} = -2 \)

53. \(5 - 9w = 23 \)

54. HEALTH A female burns 4.5 Calories per minute pushing a lawn mower. Write an equation to represent the number of Calories \(C \) burned if Ebony pushes a lawn mower for \(m \) minutes. How long will it take Ebony to burn 150 Calories mowing the lawn? (Lesson 2-3)

55. A teacher took a survey of his students to find out how many televisions they had in their homes. The results are shown in the table. Write a set of ordered pairs representing the data in the table and draw a graph showing the relationship between students and the number of televisions in their homes. (Lesson 1-9)

<table>
<thead>
<tr>
<th>Televisions</th>
<th>Number of Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Write an algebraic expression for each verbal expression. Then simplify, indicating the properties used. (Lesson 1-6)

56. twice the product of \(p \) and \(q \) increased by the product of \(p \) and \(q \)

57. three times the square of \(x \) plus the sum of \(x \) squared and seven times \(x \)

Find the solution set for each inequality, given the replacement set. (Lesson 1-3)

58. \(3x + 2 > 2; \{0, 1, 2\} \)

59. \(2y^2 - 1 > 0; \{1, 3, 5\} \)

Evaluate each expression when \(a = 5, \) \(b = 8, \) and \(c = 1. \) (Lesson 1-2)

60. \(5(b - a) \)

61. \(\frac{3a^2}{b + c} \)

62. \((a + 2b) - c \)

PREREQUISITE SKILL Simplify each fraction. (Pages 694–695)

63. \(\frac{28}{49} \)

64. \(\frac{36}{60} \)

65. \(\frac{8}{120} \)

66. \(\frac{108}{9} \)
Translate each equation into a verbal sentence. (Lesson 2-1)

1. \(2 = x - 9\)
2. \(8 + 7t = 22\)
3. \(a = 1 + \frac{3}{5}b\)
4. \(n^2 - 6 = 5n\)

GEOMETRY For Exercises 5 and 6, use the following information.

The surface area \(S\) of a sphere equals four times \(\pi\) times the square of the radius \(r\). (Lesson 2-1)

5. Write the formula for the surface area of a sphere.
6. What is the surface area of a sphere if the radius is 7 centimeters?

Solve each equation. Check your solution. (Lesson 2-2)

7. \(d + 18 = -27\)
8. \(m - 77 = -61\)
9. \(-12 + a = -36\)
10. \(t - (-16) = 9\)

PALEONTOLOGY For Exercises 11 and 12, use the following information. (Lesson 2-2)

The skeleton of a juvenile dinosaur was recently found in Illinois. If the dinosaur had been fully grown, it would have been \(4\frac{1}{2}\) feet taller.

11. Write an equation to find the height \(x\) of the juvenile dinosaur if a fully grown dinosaur is 12 feet tall.
12. Solve the equation to find the height of the dinosaur.

Solve each equation. Check your solution. (Lesson 2-3)

13. \(\frac{2}{3}p = 18\)
14. \(-17y = 391\)
15. \(5x = -45\)
16. \(-\frac{2}{5}d = -10\)

17. TECHNOLOGY In a phone survey of teens who have Internet access, three fourths, or 825 of those surveyed, said they use instant messaging. How many teens were surveyed? (Lesson 2-3)

Solve each equation. Check your solution. (Lesson 2-4)

18. \(-3x - 7 = 18\)
19. \(5 = \frac{m - 5}{4}\)
20. \(4h + 5 = 11\)
21. \(5d - 6 = 3d + 9\)

22. MULTIPLE CHOICE Coach Bronson recorded the heights of 130 freshmen and 95 seniors. Which expression could be used to find the average height of these freshmen and seniors? (Lesson 2-4)

<table>
<thead>
<tr>
<th>Students</th>
<th>Average Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>freshmen</td>
<td>5 feet 5 inches</td>
</tr>
<tr>
<td>seniors</td>
<td>5 feet 8 inches</td>
</tr>
</tbody>
</table>

A \(\frac{65(130) + 68(95)}{225}\)
B \([65(130) + 68(95)] \cdot 225\)
C \(\frac{65(130) + 68(95) \cdot \frac{1}{225}}{}\)
D \(\frac{68(130) + 65(95)}{225}\)

Solve each equation. Then check your solution. (Lesson 2-5)

23. \(7 + 2(w + 1) = 2w + 9\)
24. \(-8(4 + 9r) = 7(-2 - 11r)\)

25. NUMBER THEORY Two thirds of a number equals 3 increased by one half of the number. Find the number. (Lesson 2-5)

26. MULTIPLE CHOICE The sides of the hexagon are the same length. If the perimeter of the hexagon is \(18x + 9\) square centimeters, what is the length of each side? (Lesson 2-5)

<table>
<thead>
<tr>
<th>Side Length</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>3.5 cm</td>
</tr>
<tr>
<td>G</td>
<td>7 cm</td>
</tr>
<tr>
<td>H</td>
<td>12 cm</td>
</tr>
<tr>
<td>J</td>
<td>33.5 cm</td>
</tr>
</tbody>
</table>
The ingredients in the recipe will make 4 servings of honey frozen yogurt. Keri can use ratios and equations to find the amount of each ingredient needed to make enough yogurt for her club meeting.

The recipe above states that for 4 servings you need 2 cups of milk. The ratio of servings to milk may be written as 4 to 2, 4:2, or \(\frac{4}{2} \). In simplest form, the ratio is written as 2 to 1, 2:1, or \(\frac{2}{1} \).

Suppose you wanted to double the recipe to have 8 servings. The amount of milk required would be 4 cups. The ratio of servings to milk is \(\frac{8}{4} \). When this ratio is simplified, the ratio is \(\frac{2}{1} \). Notice that this ratio is equal to the original ratio. An equation stating that two ratios are equal is called a proportion. So, we can state that \(\frac{4}{2} = \frac{8}{4} \) is a proportion.

Determine Whether Ratios Form a Proportion

Determine whether the ratios \(\frac{4}{5} \) and \(\frac{24}{30} \) form a proportion.

\[
\begin{align*}
\frac{4}{5} & \quad \frac{24}{30} \\
\div 1 & \quad \div 6 \\
\frac{4}{5} & = \frac{4}{5} \\
\frac{24}{30} & = \frac{4}{5} \\
\div 1 & \quad \div 6 \\
\frac{4}{5} & = \frac{4}{5}
\end{align*}
\]

The ratios are equal. Therefore, they form a proportion.

Check Your Progress

Determine whether each pair of ratios forms a proportion. Write yes or no.

1A. \(\frac{6}{10} \) \(\frac{2}{5} \)
1B. \(\frac{1}{6} \) \(\frac{5}{30} \)
There are special names for the terms in a proportion.

0.8 and 0.7 are called the means. They are the middle terms of the proportion.

0.4: 0.8 = 0.7: 1.4

0.4 and 1.4 are called the extremes. They are the first and last terms of the proportion.

Vocabulary Link

Extremes

Everyday Use

something at one end or the other of a range, as in extremes of heat and cold

Math Use

the first and last terms of a proportion

KEY CONCEPT

Means–Extremes Property of Proportion

Words

In a proportion, the product of the extremes is equal to the product of the means.

Symbols

If \(\frac{a}{b} = \frac{c}{d} \), then \(ad = bc \).

Examples

Since \(\frac{2}{4} = \frac{1}{2} \), \(2(2) = 4(1) \) or \(4 = 4 \).

Another way to determine whether two ratios form a proportion is to use cross products. If the cross products are equal, then the ratios form a proportion.

EXAMPLE

Use Cross Products

Use cross products to determine whether each pair of ratios forms a proportion.

a.

\[\frac{0.4}{0.8} = \frac{0.7}{1.4} \]

Write the equation.

\[\frac{0.4}{0.8} = \frac{0.7}{1.4} \]

Find the cross products.

\[0.4(1.4) = 0.8(0.7) \]

Simplify.

\[0.56 = 0.56 \]

The cross products are equal, so the ratios form a proportion.

b.

\[\frac{6}{8} = \frac{24}{28} \]

Write the equation.

\[\frac{6}{8} = \frac{24}{28} \]

Find the cross products.

\[6(28) = 8(24) \]

Simplify.

\[168 \neq 192 \]

The cross products are not equal, so the ratios do not form a proportion.

2A. \[\frac{0.2}{1.8} = \frac{1}{0.9} \]

2B. \[\frac{15}{36} = \frac{35}{42} \]
Solve Proportions To solve proportions that involve a variable, use cross products and the techniques used to solve other equations.

EXAMPLE Solve a Proportion

Solve the proportion \(\frac{n}{15} = \frac{24}{16} \).

\[
\frac{n}{15} = \frac{24}{16} \quad \text{Original equation}
\]

\[16(n) = 15(24) \quad \text{Find the cross products.}\]

\[16n = 360 \quad \text{Simplify.}\]

\[\frac{16n}{16} = \frac{360}{16} \quad \text{Divide each side by 16.}\]

\[n = 22.5 \quad \text{Simplify.}\]

Check Your Progress

Solve each proportion. If necessary, round to the nearest hundredth.

3A. \(\frac{r}{8} = \frac{25}{40} \)

3B. \(\frac{3.2}{4} = \frac{2.6}{n} \)

The ratio of two measurements having different units of measure is called a **rate**. For example, a price of $1.99 per dozen eggs, a speed of 55 miles per hour, and a salary of $30,000 per year are all rates. Proportions are often used to solve problems involving rates.

Real-World EXAMPLE

BICYCLING Trent goes on a 30-mile bike ride every Saturday. He rides the distance in 4 hours. At this rate, how far can he ride in 6 hours?

Explore Let \(m \) represent the number of miles Trent can ride in 6 hours.

Plan Write a proportion for the problem using rates.

\[
\text{miles} \rightarrow \frac{30}{4} = \frac{m}{6} \quad \text{← miles}\]

\[
\text{hours} \rightarrow \frac{4}{6} = \frac{m}{6} \quad \text{← hours}\]

Solve Estimate: If he rides 30 miles in 4 hours, then he would ride 60 miles in 8 hours. So, in 6 hours, he would ride between 30 and 60 miles.

\[\frac{30}{4} = \frac{m}{6} \quad \text{Original proportion}\]

\[30(6) = 4(m) \quad \text{Find the cross products.}\]

\[180 = 4m \quad \text{Simplify.}\]

\[\frac{180}{4} = \frac{4m}{4} \quad \text{Divide each side by 4.}\]

\[45 = m \quad \text{Simplify.}\]

Check Check the reasonableness of the solution. If Trent rides 30 miles in 4 hours, he rides 7.5 miles in 1 hour. So, in 6 hours, Trent can ride 6 \(\times \) 7.5 or 45 miles. The answer is correct.
4. **EXERCISE** It takes 7 minutes for Isabella to walk around the track twice. At this rate, how many times can she walk around the track in a half hour?

A ratio or rate called a **scale** compares the size of a model to the actual size of the object using a proportion. Maps and blueprints are two common scale drawings.

Real-World Example

CRATER LAKE The scale of a map for Crater Lake National Park is 2 inches = 9 miles. The distance between Discovery Point and Phantom Ship Overlook on the map is about \(1\frac{3}{4}\) inches. What is the distance \(d\) between these two places?

\[
\text{scale} \rightarrow \frac{2}{9} = \frac{1\frac{3}{4}}{d} \quad \text{actual} \\
2(d) = 9 \left(1\frac{3}{4}\right) \\
2d = \frac{63}{4} \\
2d \div 2 = \frac{63}{4} \div 2 \\
d = \frac{63}{8} \text{ or } 7\frac{7}{8}
\]

The actual distance is about \(7\frac{7}{8}\) miles.

5. AIRPLANES On a model airplane, the scale is 5 centimeters = 2 meters. If the wingspan of the model is 28.5 centimeters, what is the wingspan of the actual airplane?

Examples 1, 2 (pp. 105–106)

Example 3 (p. 107)

Example 4 (p. 107)

Example 5 (p. 108)

Check Your Understanding

Determine whether each pair of ratios forms a proportion. Write yes or no.

1. \(\frac{4}{11} \text{ and } \frac{12}{33}\)
2. \(\frac{16}{17} \text{ and } \frac{8}{9}\)
3. \(\frac{21}{3.5} \text{ and } \frac{0.5}{0.7}\)

Solve each proportion. If necessary, round to the nearest hundredth.

4. \(\frac{3}{4} = \frac{6}{x}\)
5. \(\frac{a}{45} = \frac{5}{15}\)
6. \(\frac{0.6}{1.1} = \frac{n}{8.47}\)

7. TRAVEL The Lehmans’ minivan requires 5 gallons of gasoline to travel 120 miles. How much gasoline will they need for a 350-mile trip?

8. BLUEPRINTS On a blueprint for a house, 2.5 inches equals 10 feet. If the length of a wall is 12 feet, how long is the wall on the blueprint?
Determine whether each pair of ratios forms a proportion. Write yes or no.

9. \(\frac{3}{2} : \frac{21}{14} \)
10. \(\frac{8}{9} : \frac{12}{18} \)
11. \(\frac{2.3}{3.0} : \frac{3.4}{3.6} \)
12. \(\frac{5}{2} : \frac{4}{1.6} \)
13. \(\frac{21.1}{1.1} : \frac{14.4}{1.2} \)
14. \(\frac{4.2}{3.6} : \frac{1.68}{2.24} \)

Solve each proportion. If necessary, round to the nearest hundredth.

15. \(\frac{4}{x} = \frac{2}{10} \)
16. \(\frac{1}{y} = \frac{3}{15} \)
17. \(\frac{6}{5} = \frac{x}{15} \)
18. \(\frac{20}{28} = \frac{n}{21} \)
19. \(\frac{6}{8} = \frac{7}{a} \)
20. \(\frac{16}{7} = \frac{9}{b} \)
21. \(\frac{w}{2} = \frac{4.5}{6.8} \)
22. \(\frac{t}{0.3} = \frac{1.7}{0.9} \)
23. \(\frac{2}{0.21} = \frac{8}{n} \)
24. \(\frac{2.4}{3.6} = \frac{s}{1.8} \)
25. \(\frac{1}{0.19} = \frac{12}{n} \)
26. \(\frac{7}{1.066} = \frac{z}{9.65} \)

27. WORK Jun earns $152 in 4 days. At that rate, how many days will it take him to earn $532?

28. DRIVING Lanette drove 248 miles in 4 hours. At that rate, how long will it take her to drive an additional 93 miles?

29. MODELS A collector’s model racecar is scaled so that 1 inch on the model equals \(\frac{6}{4} \) feet on the actual car. If the model is \(\frac{2}{3} \) inch high, how high is the actual car?

30. GEOGRAPHY On a map of Illinois, the distance between Chicago and Algonquin is 3.2 centimeters. If 2 centimeters = 40 kilometers, what is the approximate distance between the two cities?

Solve each proportion. If necessary, round to the nearest hundredth.

31. \(\frac{6}{14} = \frac{7}{x - 3} \)
32. \(\frac{5}{3} = \frac{6}{x + 2} \)
33. \(\frac{3 - y}{4} = \frac{1}{9} \)

34. PETS A research study shows that three out of every twenty pet owners bought their pets from breeders. Of the 122 animals cared for by a veterinarian, how many would you expect to have been bought from breeders?

ANALYZE TABLES For Exercises 35 and 36, use the table.

35. Write a ratio of the number of gold medals won to the total number of medals won for each country.

<table>
<thead>
<tr>
<th>Country</th>
<th>Gold</th>
<th>Silver</th>
<th>Bronze</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td>907</td>
<td>697</td>
<td>615</td>
<td>2219</td>
</tr>
<tr>
<td>USSR/UT/Russia</td>
<td>525</td>
<td>436</td>
<td>409</td>
<td>1370</td>
</tr>
<tr>
<td>Germany/E. Ger/W. Ger</td>
<td>388</td>
<td>408</td>
<td>434</td>
<td>1230</td>
</tr>
<tr>
<td>Great Britain</td>
<td>189</td>
<td>242</td>
<td>237</td>
<td>668</td>
</tr>
<tr>
<td>France</td>
<td>199</td>
<td>202</td>
<td>230</td>
<td>631</td>
</tr>
<tr>
<td>Italy</td>
<td>189</td>
<td>154</td>
<td>168</td>
<td>511</td>
</tr>
<tr>
<td>Sweden</td>
<td>140</td>
<td>157</td>
<td>179</td>
<td>476</td>
</tr>
</tbody>
</table>

Source: infoplease.com and athens2004.com

36. Do any two of the ratios you wrote for Exercise 35 form a proportion? If so, explain the real-world meaning of the proportion.
37. **OPEN ENDED** Find an example of ratios used in an advertisement. Analyze the ratios and describe how they are used to sell the product.

38. **REASONING** Explain the difference between a ratio and a proportion.

39. **CHALLENGE** Consider the proportion \(\frac{2a + 3b}{4b + 3c} \). What is the value of \(\frac{2a + 3b}{4b + 3c} \) (Hint: Choose different values of \(a, b, \) and \(c \) for which the proportion is true and evaluate the expression.)

40. **Writing in Math** Use the information about recipes on page 105 to explain how ratios are used in recipes. Include an explanation of how to use a proportion to determine how much honey is needed if you use 3 eggs, and a description of how to alter the recipe to get 5 servings.

Standardized Test Practice

41. In the figure, \(x:y = 2:3 \) and \(y:z = 3:5 \). If \(x = 10 \), find the value of \(z \).

A 15
B 20
C 25
D 30

42. **REVIEW** If \(\triangle LMN \) is similar to \(\triangle LPO \), what is the length of side \(z \)?

F 240 units
H 120 units
G 140 units
J 70 units

Spiral Review

Solve each equation. Then check your solution. (Lessons 2-4 and 2-5)

43. \(8y - 10 = -3y + 2 \)
44. \(17 + 2n = 21 + 2n \)
45. \(-6(d - 3) = -d \)
46. \(5 - 9w = 23 \)
47. \(\frac{m}{5} + 6 = 31 \)
48. \(\frac{z - 7}{5} = -3 \)

49. Sketch a reasonable graph for the temperature in the following statement.
 In August, Joel enters his house and turns on the air conditioner. (Lesson 1-9)

Evaluate each expression. (Lesson 1-2)

50. \(12(5) - 6(4) \)
51. \(7(0.2 + 0.5) - 0.6 \)
52. \([6^2 - 3(2 + 5)] ÷ 5 \)

GET READY for the Next Lesson

PREREQUISITE SKILL Find each percent. (Pages 702–703)

53. Eighteen is what percent of 60?
54. What percent of 14 is 4.34?
55. Six is what percent of 15?
56. What percent of 2 is 8?
Percent of Change

Phone companies began using area codes in 1947. The graph shows the number of area codes in use in different years. The growth in the number of area codes can be described by using a percent of change.

Percent of Change When an increase or decrease is expressed as a percent, the percent is called the percent of change. If the new number is greater than the original number, the percent of change is a percent of increase. If the new number is less than the original, the percent of change is a percent of decrease.

EXAMPLE Find Percent of Change

State whether each percent of change is a percent of increase or a percent of decrease. Then find each percent of change.

a. original: $25
 new: $28

 Since the new amount is greater than the original, this is a percent of increase. Find the amount of change.

 \[28 - 25 = 3\]

 Use the original number, 25, as the base.

 \[
 \frac{\text{change}}{\text{original amount}} = \frac{3}{25} = \frac{r}{100}
 \]

 \[3(100) = 25(r)\]

 \[300 = 25r\]

 \[\frac{300}{25} = \frac{25r}{25}\]

 \[12 = r\]

 The percent of increase is 12%.

b. original: 30
 new: 12

 This is a percent of decrease because the new amount is less than the original. Find the amount of change.

 \[30 - 12 = 18\]

 Use the original number, 30, as the base.

 \[
 \frac{\text{change}}{\text{original amount}} = \frac{18}{30} = \frac{r}{100}
 \]

 \[18(100) = 30(r)\]

 \[1800 = 30r\]

 \[\frac{1800}{30} = \frac{30r}{30}\]

 \[60 = r\]

 The percent of decrease is 60%.
FOOTBALL The National Football League’s (NFL) fields are 120 yards long. The Canadian Football League’s (CFL) fields are 25% longer. How long is a CFL field?

Let \(\ell \) = the length of a CFL field. Since 25% is a percent of increase, an NFL field is shorter than a CFL field. Therefore, \(\ell - 120 \) represents the change.

\[
\frac{\text{change}}{\text{original amount}} = \frac{\ell - 120}{120} = \frac{25}{100}
\]

Percent proportion

\[
(\ell - 120)(100) = 120(25)
\]

Find the cross products.

\[
100\ell - 12,000 = 3000
\]

Distributive Property

\[
100\ell - 12,000 + 12,000 = 3000 + 12,000
\]

Add 12,000 to each side.

\[
100\ell = 15,000
\]

Simplify.

\[
\frac{100\ell}{100} = \frac{15,000}{100}
\]

Divide each side by 100.

\[
\ell = 150
\]

Simplify.

The length of the field used by the CFL is 150 yards.

Solve Problems Sales tax is a tax that is added to the cost of the item. It is an example of a percent of increase.

SALES TAX A concert ticket costs $45. If the sales tax is 6.25%, what is the total price of the ticket?

The tax is 6.25% of the price of the ticket.

\[
6.25\% \text{ of } \$45 = 0.0625 \times 45 = 2.8125
\]

Use a calculator.

Round $2.8125 to $2.81. Add this amount to the original price.

\[
\$45.00 + \$2.81 = \$47.81
\]

The total price of the ticket is $47.81.

TAXES A new DVD costs $24.99. If the sales tax is 7.25%, what is the total cost?

Discount is the amount by which the regular price of an item is reduced. It is an example of a percent of decrease.
DISCOUNT A sweater is on sale for 35% off the original price. If the original price of the sweater is $38, what is the discounted price?

The discount is 35% of the original price.

\[
35\% \text{ of } 38 = 0.35 \times 38 \\
= 13.30 \\
\text{Use a calculator.}
\]

Subtract $13.30 from the original price.

\[
38.00 - 13.30 = 24.70 \\
The \text{discounted price of the sweater is } 24.70.
\]

4. SALES A picture frame originally priced at $14.89 is on sale for 40% off. What is the discounted price?

State whether each percent of change is a percent of increase or a percent of decrease. Then find each percent of change. Round to the nearest whole percent.

| Example 1
(p. 111) | 1. original: 72
new: 36 | 2. original: 45
new: 50 | 3. original: 14 books
new: 16 books | 4. original: 150 T-shirts
new: 120 T-shirts |
|---|---|---|---|
| **Example 2**
(p. 112) | 5. GEOGRAPHY The distance from El Monte to Fresno is 211 miles. The distance from El Monte to Oakland is about 64.5% longer. To the nearest mile, what is the distance from El Monte to Oakland? |
| **Example 3**
(p. 112) | 6. software: $39.50
sales tax: 6.5% | 7. compact disc: $15.99
sales tax: 5.75% |
| **Example 4**
(p. 113) | 8. jeans: $45.00
discount: 25% | 9. book: $19.95
discount: 33% |

Find the total price of each item.

Find the discounted price of each item.

Exercises

State whether each percent of change is a percent of increase or a percent of decrease. Then find each percent of change. Round to the nearest whole percent.

<table>
<thead>
<tr>
<th>HOMEWORK HELP</th>
<th>For Exercises</th>
<th>See Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>10–17</td>
<td>1</td>
</tr>
<tr>
<td>18, 19</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>20–25</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>26–31</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

| 10. original: 50
new: 70 | 11. original: 25
new: 18 |
|---|---|
| 12. original: 58
new: 152 | 13. original: 13.7
new: 40.2 |
| 14. original: 15.6 meters
new: 11.4 meters | 15. original: 132 students
new: 150 students |
| 16. original: $85
new: $90 | 17. original: 40 hours
new: 32.5 hours |
18. **EDUCATION** According to the Census Bureau, the average income of a person with a high school diploma is $27,351. The income of a person with a bachelor’s degree is about 57% higher. What is the average income of a person with a bachelor’s degree?

19. **BOATS** A 36-foot sailboat that is new costs 86% more than the same boat in good used condition. What is the cost of a new 36-foot sailboat?

<table>
<thead>
<tr>
<th>Type of Boat</th>
<th>Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Used</td>
<td>70,000</td>
</tr>
<tr>
<td>New</td>
<td>$x</td>
</tr>
</tbody>
</table>

Find the total price of each item.

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
<th>Tax Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>umbrella</td>
<td>$14.00</td>
<td>5.5%</td>
</tr>
<tr>
<td>hat</td>
<td>$18.50</td>
<td>6.25%</td>
</tr>
<tr>
<td>backpack</td>
<td>$35.00</td>
<td>7%</td>
</tr>
<tr>
<td>clock radio</td>
<td>$39.99</td>
<td>6.75%</td>
</tr>
<tr>
<td>candle</td>
<td>$7.50</td>
<td>5.75%</td>
</tr>
<tr>
<td>sandals</td>
<td>$29.99</td>
<td>5.75%</td>
</tr>
<tr>
<td>umbrella</td>
<td>$14.00</td>
<td>5.5%</td>
</tr>
<tr>
<td>hat</td>
<td>$18.50</td>
<td>6.25%</td>
</tr>
<tr>
<td>backpack</td>
<td>$35.00</td>
<td>7%</td>
</tr>
<tr>
<td>clock radio</td>
<td>$39.99</td>
<td>6.75%</td>
</tr>
<tr>
<td>candle</td>
<td>$7.50</td>
<td>5.75%</td>
</tr>
<tr>
<td>sandals</td>
<td>$29.99</td>
<td>5.75%</td>
</tr>
</tbody>
</table>

Find the discounted price of each item.

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
<th>Discount Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>shirt</td>
<td>$45.00</td>
<td>40%</td>
</tr>
<tr>
<td>socks</td>
<td>$6.00</td>
<td>20%</td>
</tr>
<tr>
<td>gloves</td>
<td>$24.25</td>
<td>33%</td>
</tr>
<tr>
<td>suit</td>
<td>$175.95</td>
<td>45%</td>
</tr>
<tr>
<td>watch</td>
<td>$37.55</td>
<td>35%</td>
</tr>
<tr>
<td>coat</td>
<td>$79.99</td>
<td>30%</td>
</tr>
</tbody>
</table>

Find the final price of each item.

<table>
<thead>
<tr>
<th>Item</th>
<th>Price</th>
<th>Tax Rate</th>
<th>Discount Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>lamp</td>
<td>$120.00</td>
<td>6%</td>
<td>20%</td>
</tr>
<tr>
<td>dress</td>
<td>$70.00</td>
<td>7%</td>
<td>30%</td>
</tr>
<tr>
<td>camera</td>
<td>$58.00</td>
<td>6.5%</td>
<td>25%</td>
</tr>
</tbody>
</table>

35. **MILITARY** In 2000, the United States had 2.65 million active-duty military personnel. In 2004, there were 1.41 million active-duty military personnel. What was the percent of decrease? Round to the nearest whole percent.

36. **THEME PARKS** In 2003, 162.3 million people visited theme parks in the United States. In 2004, the number of visitors increased by about 4%. About how many people visited theme parks in the United States in 2004?

37. **ANALYZE TABLES** What are the projected 2050 populations for each country in the table? Which is projected to be the most populous?

<table>
<thead>
<tr>
<th>Country</th>
<th>1997 Population (billions)</th>
<th>Projected Percent of Increase for 2050</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>1.24</td>
<td>22.6%</td>
</tr>
<tr>
<td>India</td>
<td>0.97</td>
<td>57.8%</td>
</tr>
<tr>
<td>United States</td>
<td>0.27</td>
<td>44.4%</td>
</tr>
</tbody>
</table>

38. **RESEARCH** Use the Internet or other reference to find the tuition for the last several years at a college of your choice. Find the percent of change for the tuition during these years. Predict the tuition for the year you plan to graduate from high school.

39. **CHALLENGE** Is the following equation sometimes, always, or never true? Explain your reasoning.

 \[x\% \text{ of } y = y\% \text{ of } x \]

40. **OPEN ENDED** Give a counterexample to the statement *The percent of change must always be less than 100%.*
41. **FIND THE ERROR** Laura and Cory are writing proportions to find the percent of change if the original number is 20 and the new number is 30. Who is correct? Explain your reasoning.

Laura

Amount of change: 30 - 20 = 10
\[\frac{10}{20} = \frac{r}{100} \]

Cory

Amount of change: 30 - 20 = 10
\[\frac{10}{30} = \frac{r}{100} \]

42. **Writing in Math** Use the data on page 111 to find the percent of increase in the number of area codes from 1999 to 2004. Explain why knowing a percent of change can be more informative than knowing how much the quantity changed.

43. The number of students at Franklin High School increased from 840 to 910 over a 5-year period. What was the percent of increase?

A 8.3%
B 14.0%
C 18.5%
D 92.3%

44. **REVIEW** The rectangle has a perimeter of \(P \) centimeters. Which equation could be used to find the length of the rectangle?

F \(P = 2.4l \)
H \(P = 2.4 + 2l \)
G \(P = 4.8 + l \)
J \(P = 4.8 + 2l \)

Solve each proportion. (Lesson 2-6)

45. \(\frac{a}{45} = \frac{3}{15} \)

46. \(\frac{2}{3} = \frac{8}{d} \)

47. \(\frac{5.2}{10.4} = \frac{t}{48} \)

Solve each equation. Check your solution. (Lesson 2-5)

48. \(6n + 3 = -3 \)

49. \(7 + 5c = -23 \)

50. \(18 = 4a - 2 \)

51. **SALES** As a salesperson, Mr. Goetz is paid a monthly salary and a commission on sales, as shown in the table. How much must Mr. Goetz sell to earn $2000 this month? (Lesson 2-4)

<table>
<thead>
<tr>
<th>Mr. Goetz's Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monthly salary</td>
</tr>
<tr>
<td>Commission on sales</td>
</tr>
</tbody>
</table>

Evaluate each expression. (Lesson 1-2)

52. \((3 + 6) ÷ 3^2 \)

53. \(6(12 - 7.5) - 7 \)

54. \(20 ÷ 4 ÷ 8 ÷ 10 \)

PREREQUISITE SKILL Solve each equation. Check your solution. (Lesson 2-5)

55. \(7y + 7 = 3y - 5 \)

56. \(7(d - 3) - 2 = 5 \)

57. \(-8 = 4 - 2(a - 5) \)
Sentence Method and Proportion Method

Recall that you can solve percent problems using two different methods. With either method, it is helpful to use “clue” words such as is and of. In the sentence method, is means equals and of means multiply. With the proportion method, the “clue” words indicate where to place the numbers in the proportion.

<table>
<thead>
<tr>
<th>Sentence Method</th>
<th>Proportion Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>15% of 40 is what number?</td>
<td>15% of 40 is what number?</td>
</tr>
<tr>
<td>0.15 \cdot 40 = ?</td>
<td>\frac{(is) \ P}{(of) \ B} = \frac{R(\text{percent})}{100} \rightarrow \frac{P}{40} = \frac{15}{100}</td>
</tr>
</tbody>
</table>

You can use the proportion method to solve percent of change problems. In this case, use the proportion \(\frac{\text{difference}}{\text{original}} = \frac{\%}{100} \). When reading a percent of change problem, or any other word problem, look for the important numerical information.

Example In life skills class, Kishi heated **20 milliliters of water**. She let the water boil for 10 minutes. Afterward, only **17 milliliters of water remained**, due to evaporation. What is the percent of decrease in the amount of water?

\[
\frac{\text{difference}}{\text{original}} = \frac{\%}{100} \rightarrow \frac{20 - 17}{20} = \frac{r}{100}
\]

Percent proportion

\[
\frac{3}{20} = \frac{r}{100}
\]

Simplify.

\[
3(100) = 20(r)
\]

Find the cross products.

\[
300 = 20r
\]

Simplify.

\[
\frac{300}{20} = \frac{20r}{20}
\]

Divide each side by 20.

\[
15 = r
\]

Simplify.

There was a 15% decrease in the amount of water.

Reading to Learn

Give the original number and the amount of change. Then write and solve a percent proportion.

1. Monsa needed to lose weight for wrestling. At the start of the season, he weighed 166 pounds. By the end of the season, he weighed 158 pounds. What is the percent of decrease in Monsa’s weight?

2. On Carla’s last Algebra test, she scored 94 points out of 100. On her first Algebra test, she scored 75 points out of 100. What is the percent of increase in her score?

3. An online bookstore tracks daily book sales. A certain book sold 12,476 copies on Monday. After the book was mentioned on a national news program, sales were 37,884 on Tuesday. What is the percent of increase from Monday to Tuesday?
Solve for a Specific Variable

Suppose the designer of the Magnum XL-200 decided to adjust the height of the second hill so that the coaster would have a speed of 49 feet per second when it reached the top. If we ignore friction, the equation \(g(195 - h) = \frac{1}{2}v^2 \) can be used to find the height of the second hill. In this equation, \(g \) represents the acceleration due to gravity (32 feet per second squared), \(h \) is the height of the second hill, and \(v \) is the velocity of the coaster when it reaches the top of the second hill.

Solve for Variables Some equations such as the one above contain more than one variable. It is often useful to solve these equations for one of the variables.

EXAMPLE Solve an Equation for a Specific Variable

Solve \(3x - 4y = 7 \) for \(y \).

\[
\begin{align*}
3x - 4y &= 7 \\
3x - 4y - 3x &= 7 - 3x \\
-4y &= 7 - 3x \\
\frac{-4y}{-4} &= \frac{7 - 3x}{-4} \\
y &= \frac{7 - 3x}{-4} \\
&= \frac{3x - 7}{4}
\end{align*}
\]

The value of \(y \) is \(\frac{3x - 7}{4} \).

CHECK Your Progress

Solve each equation for the variable indicated.

1A. \(15 = 3n + 6p \), for \(n \)
1B. \(\frac{k - 2}{5} = 11j \), for \(k \)

It is sometimes helpful to use the Distributive Property to isolate the variable for which you are solving an equation or formula.
EXAMPLE

Solve an Equation for a Specific Variable

Solve $2m - t = sm + 5$ for m.

Original equation

$2m - t = sm + 5$

Subtract sm from each side.

$2m - t - sm = 5$

Simplify.

$2m - t - sm + t = 5 + t$

Add t to each side.

$2m - sm = 5 + t$

Simplify.

$m(2 - s) = 5 + t$

Use the Distributive Property.

Divide each side by $2 - s$.

$m = \frac{5 + t}{2 - s}$

Simplify.

The value of m is $\frac{5 + t}{2 - s}$. Since division by 0 is undefined, $2 - s \neq 0$ or $s \neq 2$.

CHECK Your Progress

Solve each equation for the variable indicated.

2A. $d + 5c = 3d - 1$, for d

2B. $6q - 18 = qr + s$, for q

Use Formulas Sometimes solving a formula for a specific variable will help you solve the problem.

YO-YOS Use the information about the largest yo-yo at the left. The formula for the circumference of a circle is $C = 2\pi r$, where C represents circumference and r represents radius.

a. Solve the formula for r.

b. Find the radius of the yo-yo.

The formula for the volume of a rectangular prism is $V = \ell wh$, where ℓ is the length, w is the width, and h is the height.

3A. Solve the formula for w.

3B. Find the width of a rectangular prism that has a volume of 79.04 cubic centimeters, a length of 5.2 centimeters, and a height of 4 centimeters.
When using formulas, you may want to use **dimensional analysis**, which is the process of carrying units throughout a computation.

PHYSICAL SCIENCE The formula \(s = \frac{1}{2}at^2 \) represents the distance \(s \) that a free-falling object will fall near a planet or the Moon in a given time \(t \). In the formula, \(a \) represents the acceleration due to gravity.

a. Solve the formula for \(a \).

\[
\frac{2}{t^2}(s) = \frac{2}{t^2}\left(\frac{1}{2}at^2\right) \quad \text{Multiply each side by \(\frac{2}{t^2} \).}
\]

\[
\frac{2s}{t^2} = a \quad \text{Simplify.}
\]

b. A free-falling object near the Moon drops 20.5 meters in 5 seconds. What is the value of \(a \) for the Moon?

\[
a = \frac{2s}{t^2} \quad \text{Formula for \(a \)}
\]

\[
= \frac{2(20.5 \text{ m})}{(5 \text{ s})^2} \quad s = 20.5 \text{ m and } t = 5 \text{ s.}
\]

\[
= \frac{1.64 \text{ m}}{s^2} \text{ or } 1.64 \text{ m/s}^2 \quad \text{Use a calculator.}
\]

Acceleration due to gravity on the Moon is 1.64 meters per second squared.

CHECK Your Progress.

The formula \(s = vt + \frac{1}{2}at^2 \) represents the distance \(s \) an object travels with an initial velocity \(v \), time \(t \), and constant rate of acceleration \(a \).

4A. Solve the formula for \(v \).

4B. A sports car accelerates at a rate of 8 ft/s² and travels 100 feet in about 2.8 seconds. What is the initial velocity to the nearest tenth?

Examples 1, 2 (pp. 117–118)

Solve each equation or formula for the variable specified.

1. \(-3x + b = 6x\), for \(x \)
2. \(4z + b = 2z + c\), for \(z \)
3. \(y + a = c\), for \(y \)
4. \(p = a(b + c)\), for \(a \)

Example 3 (p. 118)

GEOMETRY For Exercises 5 and 6, use the formula for the area of a triangle.

5. Solve the formula for \(h \).

6. What is the height of a triangle with an area of 28 square feet and a base of 8 feet?

Example 4 (p. 119)

SWIMMING A swimmer swims about one third of a lap per minute. At this rate, how many minutes would it take to swim 8 laps? (Hint: Use \(d = rt \).)
Solve each equation or formula for the variable specified.

8. \(y = mx + b \), for \(m \)
9. \(v = r + at \), for \(a \)
10. \(km + 5x = 6y \), for \(m \)
11. \(4b - 5 = -t \), for \(b \)
12. \(c = \frac{3}{4}y + b \), for \(y \)
13. \(\frac{3}{5}m + a = b \), for \(m \)
14. \(\frac{3ax - n}{5} = -4 \), for \(x \)
15. \(\frac{by + 2}{3} = c \), for \(y \)
16. \(5g + h = g \), for \(g \)
17. \(8t - r = 12t \), for \(t \)
18. \(3y + z = am - 4y \), for \(y \)
19. \(9a - 2b = c + 4a \), for \(a \)
20. \(at + b = ar - c \), for \(a \)

GEOMETRY For Exercises 22 and 23, use the formula for the area of a trapezoid.

22. Solve the formula for \(h \).
23. What is the height of a trapezoid with an area of 60 square meters and bases of 8 meters and 12 meters?

WORK For Exercises 24 and 25, use the following information.
The formula \(s = \frac{w - 10e}{m} \) is often used by placement services to find keyboarding speeds. In the formula, \(s \) represents the speed in words per minute, \(w \) represents the number of words typed, \(e \) represents the number of errors, and \(m \) represents the number of minutes typed.

24. Solve the formula for \(e \).
25. If Mateo typed 410 words in 5 minutes and received a keyboard speed of 76 words per minute, how many errors did he make?

Solve each equation or formula for the variable specified.

26. \(S = \frac{n}{2}(A + t) \), for \(A \)
27. \(p(t + 1) = -2 \), for \(t \)
28. \(\frac{5x + y}{a} = 2 \), for \(a \)

Write an equation and solve for the variable specified.

29. Seven less than a number \(t \) equals another number \(r \) plus 6. Solve for \(t \).
30. Five minus twice a number \(p \) equals 6 times another number \(q \) plus 1. Solve for \(p \).
31. Five eighths of a number \(x \) is 3 more than one half of another number \(y \). Solve for \(y \).

DANCING For Exercises 32 and 33, use the following information.
The formula \(P = \frac{1.2W}{H^2} \) represents the amount of pressure exerted on the floor by a dancer’s heel. In this formula, \(P \) is the pressure in pounds per square inch, \(W \) is the weight of a person wearing the shoe in pounds, and \(H \) is the width of the heel of the shoe in inches.

32. Solve the formula for \(W \).
33. Find the weight of the dancer if the heel is 3 inches wide and the pressure exerted is 30 pounds per square inch.
34. **PACKAGING** The Yummy Ice Cream Company wants to package ice cream in cylindrical containers that have a volume of 5453 cubic centimeters. The marketing department decides the diameter of the base of the containers should be 20 centimeters. How tall should the containers be? (Hint: \(V = \pi r^2 h \))

35. **CHALLENGE** Write a formula for the area of the arrow. Describe how you found it.

36. **REASONING** Describe the possible values of \(t \) if \(s = \frac{r}{t - 2} \). Explain your reasoning.

37. **OPEN ENDED** Write a formula for \(A \), the area of a geometric figure such as a triangle or rectangle. Then solve the formula for a variable other than \(A \).

38. **Writing in Math** Use the information on page 117 to explain how equations are used to design roller coasters. Include a list of steps you could use to solve the equation for \(h \), and the height of the second hill of the roller coaster.

39. If \(2x + y = 5 \), what is the value of \(4x \)?

 - A 10 \(- y \)
 - B 10 \(- 2y \)
 - C \(\frac{5 - y}{2} \)
 - D \(\frac{10 - y}{2} \)

40. **REVIEW** What is the base of the triangle if the area is 56 meters squared?

 - F 4 m
 - G 8 m
 - H 16 m
 - J 28 m

41. **FOOD** In order for a food to be marked “reduced fat,” it must have at least 25% less fat than the same full-fat food. If one ounce of reduced-fat cheese has 8 grams of fat, what is the least amount of fat in one ounce of regular cheese? (Lesson 2-7)

Solve each proportion. (Lesson 2-6)

42. \(\frac{2}{9} = \frac{5}{a} \)

43. \(\frac{15}{32} = \frac{t}{8} \)

44. \(\frac{x + 1}{8} = \frac{3}{4} \)

45. **PREREQUISITE SKILL** Use the Distributive Property to rewrite each expression without parentheses. (Lesson 1-5)

 - 6(2 - t)
 - (5 + 2m)3
 - \(-7(3a + b)\)
 - \(\frac{2}{3}(6h - 9)\)
In an individual figure skating competition, the score for the long program is worth twice the score for the short program. Suppose a skater scores 5.5 in the short program and 5.8 in the long program. The final score is determined using a weighted average.

\[
\frac{5.5(1) + 5.8(2)}{1 + 2} = \frac{5.5 + 11.6}{3} = \frac{17.1}{3} = \text{or } 5.7
\]

The final score would be 5.7.

Mixture Problems The skater’s average score is an example of a weighted average. The weighted average \(M \) of a set of data is the sum of the product of the number of units and the value per unit divided by the sum of the number of units. **Mixture problems**, in which two or more parts are combined into a whole, are solved using weighted averages.

Prices

TRAIL MIX How many pounds of mixed nuts selling for $4.75 per pound should be mixed with 10 pounds of dried fruit selling for $5.50 per pound to obtain a trail mix that sells for $4.95 per pound?

Let \(w \) = the number of pounds of mixed nuts. Make a table.

<table>
<thead>
<tr>
<th>Units (lb)</th>
<th>Price per Unit (lb)</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dried Fruit</td>
<td>10</td>
<td>$5.50</td>
</tr>
<tr>
<td>Mixed Nuts</td>
<td>(w)</td>
<td>$4.75</td>
</tr>
<tr>
<td>Trail Mix</td>
<td>(10 + w)</td>
<td>$4.95</td>
</tr>
</tbody>
</table>

Price of dried fruit plus price of nuts equals price of trail mix.

\[
5.50(10) + 4.75w = 49.50 + 4.95w
\]

Distribute Property

\[
55.00 + 4.75w = 49.50 + 4.95w
\]

Subtract 4.75w from each side.

\[
55.00 = 49.50 + 0.20w
\]

Simplify.

\[
55.00 - 49.50 = 49.50 + 0.20w - 49.50
\]

Subtract 49.50 from each side.

\[
5.50 = 0.20w
\]

Simplify.

\[
\frac{5.50}{0.20} = \frac{0.20w}{0.20}
\]

Divide each side by 0.20.

\[
27.5 = w
\]

Simplify.

27.5 pounds of mixed nuts should be used for the trail mix.
Uniform Motion Problems

Problems are sometimes referred to as rate problems.

Percent Mixture Problems

SCIENCE
A chemistry experiment calls for a 30% solution of copper sulfate. Kendra has 40 milliliters of 25% solution. How many milliliters of 60% solution should she add to make a 30% solution?

Let \(x \) = the amount of 60% solution to be added. Make a table.

<table>
<thead>
<tr>
<th>Solution</th>
<th>Amount of Solution (mL)</th>
<th>Amount of Copper Sulfate</th>
</tr>
</thead>
<tbody>
<tr>
<td>25% Solution</td>
<td>40</td>
<td>0.25(40)</td>
</tr>
<tr>
<td>60% Solution</td>
<td>(x)</td>
<td>0.60x</td>
</tr>
<tr>
<td>30% Solution</td>
<td>40 + (x)</td>
<td>0.30(40 + (x))</td>
</tr>
</tbody>
</table>

Write and solve an equation using the information in the table.

\[
0.25(40) + 0.60x = 0.30(40 + x) \quad \text{Original equation}
\]

\[
10 + 0.60x = 12 + 0.30x \quad \text{Distributive Property}
\]

\[
10 + 0.60x - 0.30x = 12 + 0.30x - 0.30x \quad \text{Subtract 0.30x from each side.}
\]

\[
10 + 0.30x = 12 \quad \text{Simplify.}
\]

\[
10 - 0.30x = 12 - 10 \quad \text{Subtract 10 from each side.}
\]

\[
0.30x = 2 \quad \text{Simplify.}
\]

\[
\frac{0.30x}{0.30} = \frac{2}{0.30} \quad \text{Divide each side by 0.30.}
\]

\[
x \approx 6.67 \quad \text{Simplify.}
\]

Kendra should add 6.67 milliliters of the 60% solution to the 40 milliliters of the 25% solution. Check by substituting 6.67 for \(x \) in the original equation.

2. ANTIFREEZE One type of antifreeze is 40% glycol, and another type of antifreeze is 60% glycol. How much of each kind should be used to make 100 gallons of antifreeze that is 48% glycol?

Uniform Motion Problems

Motion problems are another application of weighted averages. Uniform motion problems are problems where an object moves at a certain speed, or rate. The formula \(d = rt \) is used to solve these problems. In the formula, \(d \) represents distance, \(r \) represents rate, and \(t \) represents time.
Speed of One Vehicle

TRAVEL On Alberto’s drive to his aunt’s house, the traffic was light and he drove the 45-mile trip in one hour. However, the return trip took him two hours. What was his average speed for the round trip?

To find the average speed for each leg of the trip, rewrite \(d = rt \) as \(r = \frac{d}{t} \).

Going

\[
\begin{align*}
r &= \frac{d}{t} \\
&= \frac{45 \text{ miles}}{1 \text{ hour}} \\
&= 45 \text{ miles per hour}
\end{align*}
\]

Returning

\[
\begin{align*}
r &= \frac{d}{t} \\
&= \frac{45 \text{ miles}}{2 \text{ hours}} \\
&= 22.5 \text{ miles per hour}
\end{align*}
\]

You may think that the average speed of the trip would be \(\frac{45 + 22.5}{2} \) or 33.75 miles per hour. However, Alberto did not drive at these speeds for equal amounts of time. You must find the weighted average for the trip.

Round Trip

Let \(M \) = the average speed.

\[
M = \frac{45(1) + 22.5(2)}{1 + 2}
\]

\[
= \frac{90}{3} = 30
\]

Alberto’s average speed was 30 miles per hour.

Check Your Progress

3. **EXERCISE** Austin jogged 2.5 miles in 16 minutes and then walked 1 mile in 10 minutes. What was his average speed?

Speeds of Two Vehicles

SAFETY Use the information about sirens at the left. A car and an emergency vehicle are heading toward each other. The car is traveling at a speed of 30 miles per hour or about 44 feet per second. The emergency vehicle is traveling at a speed of 50 miles per hour or about 74 feet per second. If the vehicles are 1000 feet apart and the conditions are ideal, in how many seconds will the driver of the car first hear the siren?

Draw a diagram. The driver can hear the siren when the total distance traveled by the two vehicles equals 1000 – 440 or 560 feet.

Let \(t \) = the number of seconds until the driver can hear the siren.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(d = rt)</td>
</tr>
<tr>
<td>Car</td>
<td>44</td>
<td>(44t)</td>
</tr>
<tr>
<td>Emergency Vehicle</td>
<td>74</td>
<td>(74t)</td>
</tr>
</tbody>
</table>
Write and solve an equation.

<table>
<thead>
<tr>
<th>Distance traveled by car</th>
<th>Distance traveled by emergency vehicle</th>
<th>equals</th>
<th>560 feet</th>
</tr>
</thead>
<tbody>
<tr>
<td>44t</td>
<td>74t</td>
<td>=</td>
<td>560</td>
</tr>
</tbody>
</table>

44t + 74t = 560
118t = 560
\[
\frac{118t}{118} = \frac{560}{118}
\]

\[t \approx 4.75\]
The driver will hear the siren in about 4.75 seconds.

4. **CYCLING** Two cyclists begin traveling in opposite directions on a circular bike trail that is 5 miles long. One cyclist travels 12 miles per hour, and the other travels 18 miles per hour. How long will it be before they meet?

Example 1

BUSINESS For Exercises 1–3, use the following information.
The Candle Supply Store sells votive wax for $0.90 a pound and low-shrink wax for $1.04 a pound. How many pounds of low-shrink wax should be mixed with 8 pounds of votive wax to obtain a blend that sells for $0.98 a pound?

1. Copy and complete the table representing the problem.

<table>
<thead>
<tr>
<th>Number of Pounds</th>
<th>Price per Pound</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Votive Wax</td>
<td>8</td>
<td>0.90(8)</td>
</tr>
<tr>
<td>Low-Shrink Wax</td>
<td>(p)</td>
<td></td>
</tr>
<tr>
<td>Blend</td>
<td>(8 + p)</td>
<td></td>
</tr>
</tbody>
</table>

2. Write an equation to represent the problem.

3. How many pounds of low-shrink wax should be mixed with 8 pounds of votive wax?

4. **COFFEE** A specialty coffee store wants to create a special mix using two coffees, one priced at $6.40 per pound and the other priced at $7.28 per pound. How many pounds of the $7.28 coffee should be mixed with 9 pounds of the $6.40 coffee to sell the mixture for $6.95 per pound?

5. **FOOD** For Exercises 5–7, use the following information.

 How many quarts of pure pineapple juice should Theo add to a 20% pineapple drink to create 5 quarts of a 50% pineapple juice mixture?

 5. Copy and complete the table representing the problem.

<table>
<thead>
<tr>
<th>Quarts</th>
<th>Total Amount of Juice</th>
</tr>
</thead>
<tbody>
<tr>
<td>20% Juice</td>
<td>(5 - n)</td>
</tr>
<tr>
<td>100% Juice</td>
<td>(n)</td>
</tr>
<tr>
<td>50% Juice</td>
<td></td>
</tr>
</tbody>
</table>

6. Write an equation to represent the problem.

7. How much pure pineapple juice and 20% juice should Theo use?
8. METALS An alloy of metals is 25% copper. Another alloy is 50% copper. How much of each should be used to make 1000 grams of an alloy that is 45% copper?

Example 3
(p. 124)

9. TRAVEL A boat travels 16 miles due north in 2 hours and 24 miles due west in 2 hours. What is the average speed of the boat?

Example 4
(pp. 124–125)

10. EXERCISE Felisa jogged 3 miles in 25 minutes and then jogged 3 more miles in 30 minutes. What was her average speed in miles per minute?

11. CYCLING A cyclist begins traveling 18 miles per hour. At the same time and place, an in-line skater follows the cyclist’s path and begins traveling 6 miles per hour. After how long will they be 24 miles apart?

12. RESCUE A fishing boat radioed the Coast Guard for a helicopter to pick up a sick crew member. At the time of the message, the boat is 660 kilometers from the helicopter and heading toward it. The average speed of the boat is 30 kilometers per hour, and the average speed of the helicopter is 300 kilometers per hour. How long will it take the helicopter to reach the boat?

Exercises

13. GRADES In Ms. Martinez’s science class, a test is worth three times as much as a quiz. If a student has test grades of 85 and 92 and quiz grades of 82, 75, and 95, what is the student’s average grade?

14. ANALYZE TABLES At Westbridge High School, a student’s grade point average (GPA) is based on the student’s grade and the class credit rating. Brittany’s grades for this quarter are shown. Find Brittany’s GPA if a grade of A equals 4 and a B equals 3.

METALS For Exercises 15–18, use the following information.

In 2005, the international price of gold was $432 per ounce, and the international price of silver was $7.35 per ounce. Suppose gold and silver were mixed to obtain 15 ounces of an alloy worth $177.21 per ounce.

15. Copy and complete the table representing the problem.

<table>
<thead>
<tr>
<th>Class</th>
<th>Credit Rating</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algebra 1</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Science</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>English</td>
<td>1</td>
<td>B</td>
</tr>
<tr>
<td>Spanish</td>
<td>1</td>
<td>A</td>
</tr>
<tr>
<td>Music</td>
<td>1/2</td>
<td>B</td>
</tr>
</tbody>
</table>

16. Write an equation to represent the problem.

17. How much gold was used in the alloy?

18. How much silver was used in the alloy?

19. FUND-RAISING The Madison High School marching band sold solid-color gift wrap for $4 per roll and print gift wrap for $6 per roll. The total number of rolls sold was 480, and the total amount of money collected was $2340. How many rolls of each kind of gift wrap were sold?
BUSINESS For Exercises 20–23, use the following information.
Party Supplies Inc. sells metallic balloons for $2 each and helium balloons for $3.50 per dozen. Yesterday, they sold 36 more metallic balloons than dozens of helium balloons. The total sales for both types of balloons were $281.00.
20. Copy and complete the table representing the problem.

<table>
<thead>
<tr>
<th>Number</th>
<th>Price</th>
<th>Total Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metallic Balloons</td>
<td>$2</td>
<td></td>
</tr>
<tr>
<td>Dozens of Helium Balloons</td>
<td>$3.50</td>
<td></td>
</tr>
</tbody>
</table>

21. Write an equation to represent the problem.
22. How many metallic balloons were sold?
23. How many dozen helium balloons were sold?

24. MONEY Lakeisha spent $4.57 on color copies and black-and-white copies for her project. She made 7 more black-and-white copies than color copies. How many color copies did she make?

<table>
<thead>
<tr>
<th>Type of Copy</th>
<th>Cost Per Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>color</td>
<td>$0.44</td>
</tr>
<tr>
<td>black-and-white</td>
<td>$0.07</td>
</tr>
</tbody>
</table>

25. FOOD Refer to the graphic at the left. How much whipping cream and 2% milk should be mixed to obtain 35 gallons of milk with 4% butterfat?

26. CHEMISTRY Hector is performing a chemistry experiment that requires 140 milliliters of a 30% copper sulfate solution. He has a 25% copper sulfate solution and a 60% copper sulfate solution. How many milliliters of each solution should he mix to obtain the needed solution?

27. TRAVEL A boat travels 36 miles in 1.5 hours and then 14 miles in 0.75 hour. What is the average speed of the boat?

28. EXERCISE An inline skater skated 1.5 miles in 28 minutes and then 1.2 more miles in 10 minutes. What was the average speed in miles per minute?

TRAVEL For Exercises 29–31, use the following information.
Two trains leave Smithville at the same time, one traveling east and the other west. The eastbound train travels at 40 miles per hour, and the westbound train travels at 30 miles per hour. Let \(h \) represent the hours since departure.

29. Copy and complete the table representing the situation.

<table>
<thead>
<tr>
<th>(r)</th>
<th>(t)</th>
<th>(d = rt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastbound Train</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westbound Train</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

30. Write an equation to determine when the trains will be 245 miles apart.

31. In how many hours will the trains be 245 miles apart?

ANIMALS For Exercises 32–34, use the graphic at the right.
Let \(t \) represent the number of seconds until the cheetah catches its prey.

32. Copy and complete the table representing the situation.

<table>
<thead>
<tr>
<th>(r)</th>
<th>(t)</th>
<th>(d = rt)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheetah</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prey</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

33. Write an equation to determine when the cheetah will catch its prey.

34. When will the cheetah catch its prey?
35. **TRACK AND FIELD** A sprinter has a bad start, and his opponent is able to start 1 second before him. If the sprinter averages 8.2 meters per second and his opponent averages 8 meters per second, will he be able to catch his opponent before the end of the 200-meter race? Explain.

36. **TRAVEL** A subway travels 60 miles per hour from Glendale to Midtown. Another subway, traveling at 45 miles per hour, takes 11 minutes longer for the same trip. How far apart are Glendale and Midtown?

37. **OPEN ENDED** Describe a real-world example of a weighted average.

38. **CHALLENGE** Write a mixture problem for \(1.00x + 0.28(40) = 0.40(x + 40)\).

39. **Writing in Math** Use the information on page 122 to explain how scores are calculated in a figure-skating competition. Include an explanation of how a weighted average can be used to find a skating score and a demonstration of how to find the weighted average of a skater who received a 4.9 in the short program and a 5.2 in the long program.

H.O.T. Problems

40. **REVIEW** Eula Jones is investing $6000, part at 4.5% interest and the rest at 6% interest. If \(d\) represents the amount invested at 4.5%, which expression represents the amount of interest earned in one year by the account paying 6%?

- A. \(0.06d\)
- B. \(0.06(d - 6000)\)
- C. \(0.06(d + 6000)\)
- D. \(0.06(6000 - d)\)

41. Todd drove from Boston to Cleveland, a distance of 616 miles. His breaks, gasoline, and food stops took 2 hours. If his trip took 16 hours altogether, what was his average speed?

- F. 38.5 mph
- H. 44 mph
- G. 40 mph
- J. 47.5 mph

Solve each equation for the variable specified. (Lesson 2-8)

42. \(a + 6 = \frac{b - 1}{4}\), for \(b\)

43. \(3t - 4 = 6t - s\), for \(t\)

State whether each percent of change is a percent of increase or a percent of decrease. Then find the percent of change. Round to the nearest whole percent. (Lesson 2-7)

44. original: $25
 new: $14

45. original: 35
 new: 42

46. original: 244
 new: 300

47. **MONEY** Tyler had $80 in his savings account. After his mother made a deposit, his new balance was $115. Write and solve an equation to find the amount of the deposit. (Lesson 2-2)

Cross-Curricular Project

Algebra and Social Studies

You’re Only as Old as You Feel! It’s time to complete your project. Use the information and data you have gathered about living to be 100 to prepare a portfolio or Web page. Be sure to include graphs and/or tables in the presentation.

Cross-Curricular Project at algebra1.com
You can use a spreadsheet to calculate weighted averages. It allows you to make calculations and print almost anything you can organize in a table.

The basic unit in a spreadsheet is called a cell. A cell may contain numbers, words, or a formula. Each cell is named by the column and row that describe its location. For example, cell B4 is in column B, row 4.

EXAMPLE

Greta Norris manages a sales firm. Each of her employees earns a different rate of commission. She has entered the commission rate and the sales for each employee for October in a spreadsheet. What was the average commission rate?

The spreadsheet shows the formula to calculate the weighted average. It multiplies the rate of commission by the amount of sales and finds the total amount of sales and amount of commission. Then it divides the amount of commission by the amount of sales. To the nearest tenth, the average rate of commission is 7.4%.

EXERCISES

For Exercises 1–3, use the table at the right.

1. What is the average price of a pound of coffee?

2. How does the November weighted average change if all of the coffee prices are increased by $1.00? by 10%?

3. Find the weighted average of a pound of coffee if the shop sold 50 pounds of each type of coffee. How does the weighted average compare to the average of the per-pound coffee prices? Explain.
Be sure the following Key Concepts are noted in your Foldable.

Key Concepts

Writing Equations *(Lesson 2-1)*
- Four-Step Problem Solving Plan:
 - Step 1: Explore the problem.
 - Step 2: Plan the solution.
 - Step 3: Solve the problem.
 - Step 4: Check the solution.

Solving Equations *(Lessons 2-2 to 2-5)*
- Addition and Subtraction Properties of Equality: If an equation is true and the same number is added to or subtracted from each side, the resulting equation is true.
- Multiplication and Division Properties of Equality: If an equation is true and each side is multiplied by the same number or divided by the same non-zero number, the resulting equation is true.
- Steps for Solving Equations:
 - Step 1: Use the Distributive Property if necessary.
 - Step 2: Simplify expressions on each side.
 - Step 3: Use the Addition and/or Subtraction Properties of Equality to get the variables on one side and the numbers without variables on the other side.
 - Step 4: Simplify the expression on each side of the equals sign.
 - Step 5: Use the Multiplication or Division Property of Equality to solve.

Ratios and Proportions *(Lesson 2-6)*
- The Means-Extremes Property of Proportion states that in a proportion, the product of the extremes is equal to the product of the means.

Key Vocabulary

- consecutive integers *(p. 94)*
- defining a variable *(p. 71)*
- dimensional analysis *(p. 119)*
- equivalent equations *(p. 79)*
- extremes *(p. 106)*
- formula *(p. 72)*
- four-step problem solving plan *(p. 71)*
- identity *(p. 99)*
- means *(p. 106)*
- mixture problem *(p. 122)*
- multi-step equations *(p. 92)*
- number theory *(p. 94)*
- percent of change *(p. 111)*
- percent of decrease *(p. 111)*
- percent of increase *(p. 111)*
- proportion *(p. 105)*
- rate *(p. 107)*
- ratio *(p. 105)*
- scale *(p. 108)*
- solve an equation *(p. 79)*
- uniform motion problem *(p. 123)*
- weighted average *(p. 122)*

Vocabulary Check

State whether each sentence is true or false. If false, replace the underlined word or number to make a true sentence.

1. An example of consecutive integers is -10 and -9.
2. A comparison of two numbers by division is called a ratio.
3. In the proportion $1:4 = x:2$, 4 and x are called the means.
4. Equations with more than one operation are called equivalent equations.
5. Dimensional analysis is the process of carrying units throughout a computation.
6. Mixture problems are solved using number theory.
7. An equation that is true for every value of the variable is called an identity.
Lesson-by-Lesson Review

2–1 Writing Equations (pp. 70–76)

Translate each sentence into an equation.
8. The sum of \(z \) and one fifth of \(w \) is ninety-six.
9. The product of \(m \) and \(n \) is as much as three times the sum of \(m \) and 8.
10. The difference of \(p \) and thirteen is identical to the square of \(p \).

Translate each equation into a verbal sentence.
11. \(\frac{56}{g} = 7 - 3g \)
12. \(8 + 2k = \frac{1}{4}k \)
13. DESERTS One third of Earth’s land surface is desert. There are 50 million square kilometers of desert. Define a variable and then write and solve an equation to find the total number of square kilometers of land surface.

Example 1 Translate the following sentence into an equation.

Forty-one increased by twice a number \(m \) is the same as three times the sum of a number \(m \) and seven.

\[41 + 2m = 3(m + 7) \]

Example 2 Translate \(2y - 5 = \frac{1}{2}y \) into a verbal sentence.

Twice a number \(y \) minus five equals one half \(y \).

2–2 Solving Equations by Using Addition and Subtraction (pp. 78–84)

Solve each equation.
14. \(h - 15 = -22 \)
15. \(\frac{3}{5} = \frac{2}{3} + a \)
16. \(16 - (-q) = 83 \)
17. \(-55 = x + (-7) \)

Write an equation for each problem. Then solve the equation and check your solution.
19. The sum of a number and –71 is 29. What is the number?
20. CANS The can opener was invented in 1858. That was 48 years after cans were first introduced. Write and solve an equation to determine in what year the can was introduced.

Example 3 Solve \(13 + p = -5 \).

\[13 + p = -5 \quad \text{Original equation} \]
\[13 + p - 13 = -5 - 13 \quad \text{Subtract 13 from each side.} \]
\[p = -18 \quad \text{Check this result.} \]

Example 4 Write an equation for the problem below. Then solve the equation.

The difference of a number and 62 is \(-47\). What is the number?

\[x - 62 = -47 \quad \text{Original equation} \]
\[x - 62 + 62 = -47 + 62 \quad \text{Add 62 to each side.} \]
\[x = 15 \quad \text{Check this result.} \]
Solving Multi-Step Equations (pp. 92–97)

Solve each equation. Check your solution.

28. $5 = 4t - 7$
29. $6 + \frac{y}{3} = -45$
30. $9 = \frac{d + 5}{8}$
31. $\frac{c}{-4} - 2 = -36$

Write an equation and solve each problem.

32. 22 increased by six times a number is -20. What is the number?
33. Find three consecutive odd integers with a sum of 39.
34. THEATER Each row in a theater has eight more seats than the previous row. If the first row has 14 seats, which row has 46 seats?

Example 7 Write and solve an equation to find three consecutive even integers with a sum of 150.

Let $n =$ the least even integer. Then $n + 2 =$ the next greater even integer and $n + 4 =$ the greatest of the three even integers.

\[
\begin{align*}
n + (n + 2) + (n + 4) &= 150 \\
3n + 6 &= 150 \\
3n &= 144 \\
n &= 48
\end{align*}
\]

The integers are 48, 50, and 52.
2–5

Solving Equations with the Variable on Each Side (pp. 98–103)

Solve each equation. Check your solution.

35. \(5b + 3 = 9b - 17\)

36. \(\frac{2}{3}n - 3 = \frac{1}{3}(2n - 9)\)

37. FUND-RAISING The Band Boosters pay $200 to rent a concession stand at a university football game. They purchase cans of soft drinks for $0.25 each and sell them at the game for $1.50 each. How many cans of soft drinks must they sell to break even?

Example 8 Solve \(7x + 56 = 5x - 11\).

\[
\begin{align*}
7x + 56 &= 5x - 11 \\
7x + 56 - 5x &= 5x - 11 - 5x \\
2x + 56 &= -11 \\
2x + 56 - 56 &= -11 - 56 \\
2x &= -67 \\
\frac{2x}{2} &= \frac{-67}{2} \\
x &= -33.5
\end{align*}
\]

38. \(14 = \frac{20}{8}\)

39. \(0.47 = \frac{1.41}{m}\)

40. WORLD RECORDS Dustin drank 14 ounces of tomato juice through a straw in 33 seconds. At this rate, approximately how long would it take him to drink a bottle of water that contains 16.9 ounces?

Example 9 Solve the proportion \(\frac{h}{15} = \frac{7}{21}\).

\[
\begin{align*}
\frac{h}{15} &= \frac{7}{21} \\
h(21) &= 15(7) \\
21h &= 105 \\
\frac{21h}{21} &= \frac{105}{21} \\
h &= 5
\end{align*}
\]

2–6

Ratios and Proportions (pp. 105–110)

Solve each proportion. If necessary, round to the nearest hundredth.

38. \(\frac{14}{x} = \frac{20}{8}\)

39. \(\frac{0.47}{6} = \frac{1.41}{m}\)

40. WORLD RECORDS Dustin drank 14 ounces of tomato juice through a straw in 33 seconds. At this rate, approximately how long would it take him to drink a bottle of water that contains 16.9 ounces?

Example 9 Solve the proportion \(\frac{h}{15} = \frac{7}{21}\).

\[
\begin{align*}
\frac{h}{15} &= \frac{7}{21} \\
h(21) &= 15(7) \\
21h &= 105 \\
\frac{21h}{21} &= \frac{105}{21} \\
h &= 5
\end{align*}
\]

2–7

Percent of Change (pp. 111–115)

State whether each percent of change is a percent of increase or a percent of decrease. Then find each percent of change. Round to the nearest whole percent.

41. original: 54
 new: 46

42. original: 17
 new: 33

43. TIPS Felicia’s meal cost $23.74. How much money should she leave for a 15% tip?

Example 10 Find the total price of a CD that costs $18.75 with 6.5% sales tax.

6.5% of $18.75 = 0.065 \times 18.75 = 1.21875
6.5% = 0.065

Round $1.21875 to $1.22. Add this amount to the original price.

$18.75 + $1.22 = $19.97

The total price of the CD is $19.97.
Solving for a Specific Variable (pp. 117–121)

Solve each equation or formula for the variable specified.

44. \(d = 5v + m \), for \(v \)

45. \(\frac{7}{4}k - g = s \), for \(k \)

46. \(\frac{ac - 3}{6} = w \), for \(c \)

47. \(9h + z = pq + 2h \), for \(h \)

48. TRAVEL In the formula \(d = rt \), \(d \) is the distance, \(r \) is the rate, and \(t \) is the time spent traveling. Solve this equation for \(r \). Then find Aida’s rate if she drove 219 miles in \(3\frac{3}{4} \) hours.

Example 11 Solve \(8q + 3b = 12 \) for \(b \).

\[
\begin{align*}
8q + 3b &= 12 & \text{Original equation} \\
8q + 3b - 8q &= 12 - 8q & \text{Subtract } 8q \text{ from each side.} \\
3b &= 12 - 8q & \text{Simplify.} \\
\frac{3b}{3} &= \frac{12 - 8q}{3} & \text{Divide each side by } 3. \\
b &= \frac{12 - 8q}{3} & \text{Simplify.}
\end{align*}
\]

The value of \(b \) is \(\frac{12 - 8q}{3} \).

Weighted Averages (pp. 122–128)

49. COFFEE Jerome blends Brand A of coffee that sells for $9.50 a pound with Brand B of coffee that sells for $12.00 a pound. If the 45 pounds of blend sells for $10.50 a pound, how many pounds of each type of coffee did Jerome use?

50. PUNCH Raquel is mixing lemon-lime soda and a fruit juice blend that is 45% juice. If she uses 3 quarts of soda, how many quarts of fruit juice must be added to produce punch that is 30% juice?

51. JOGGING Delmar ran 4 miles in 22 minutes, stopped and rested, and ran an additional 4 miles in 28 minutes. Find his average speed.

52. TRAVEL Connor is driving 65 miles per hour on the highway. Ed is 15 miles behind him driving at 70 miles per hour. After how many hours will Ed catch up to Connor?

Example 12 MANUFACTURING Percy mixes 750 liters of water with 250 liters of 2% bleach. What percent of bleach is in the resultant mixture?

Let \(x \) = the percent of bleach in the resultant mixture. Make a table.

\[
\begin{array}{c|c|c}
\text{Amount of Solution (L)} & \text{Amount of Resultant Mixture} \\
\hline
\text{Water (0% bleach)} & 750 & 750(0) \\
\text{Bleach (2% bleach)} & 250 & 250(0.02) \\
\text{Resultant Mixture (x% bleach)} & 1000 & 1000(x) \\
\end{array}
\]

Write and solve an equation using the information in the table.

\[
750(0) + 250(0.02) = 1000(x) \quad \text{Original equation}
\]

\[
\begin{align*}
5 &= 1000x & \text{Simplify.} \\
0.005 &= x & \text{Divide each side by } 1000.
\end{align*}
\]

There is 0.5% bleach in the resultant mixture.
Chapter 2 Practice Test

Translate each sentence into an equation.

1. The sum of \(x \) and four times \(y \) is equal to twenty.
2. Two thirds of \(n \) is negative eight fifths.

Solve each equation. Then check your solution.

3. \(-15 + k = 8\)
4. \(k - 16 = -21\)
5. \(-1.2x = 7.2\)
6. \(5a = 125\)
7. \(\frac{t - 7}{4} = 11\)
8. \(\frac{3}{4}y = 27\)
9. \(-12 = 7 - \frac{y}{3}\)
10. \(-\frac{2}{3}z = -\frac{4}{9}\)

11. **MULTIPLE CHOICE** The perimeter of the larger square is 11.6 centimeters greater than the perimeter of the smaller square. What are the side lengths of the smaller square?

A. 1.1 cm
B. 4.2 cm
C. 4.5 cm
D. 16.8 cm

Solve each equation. Then check your solution.

12. \(-3(x + 5) = 8x + 18\)
13. \(2p + 1 = 5p - 11\)

14. **POSTAGE** What was the percent of increase in the price of a first-class stamp from 2001 to 2006? Round to the nearest whole percent.

<table>
<thead>
<tr>
<th>Year</th>
<th>Cost of Stamp</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>34¢</td>
</tr>
<tr>
<td>2006</td>
<td>39¢</td>
</tr>
</tbody>
</table>

15. **MULTIPLE CHOICE** If \(\frac{4}{5}\) of \(\frac{3}{4}\) = \(\frac{2}{5}\) of \(\frac{x}{4}\), find the value of \(x\).

F. 12
G. 6
H. 3
J. \(\frac{3}{2}\)

Solve each proportion.

16. \(\frac{2}{10} = \frac{1}{a}\)
17. \(\frac{3}{5} = \frac{24}{x}\)
18. \(\frac{n}{4} = \frac{3.25}{52}\)
19. \(\frac{5}{12} = \frac{10}{x - 1}\)

State whether each percent of change is a percent of increase or a percent of decrease. Then find the percent of change. Round to the nearest whole percent.

20. original: 45
new: 9

21. original: 12
new: 20

Solve each equation or formula for the variable specified.

22. \(h = at - 0.25vt^2\), for \(a\)

23. \(a(y + 1) = b\), for \(y\)

24. **SALES** At The Central Perk coffee shop, Destiny sold 30 more cups of cappuccino than espresso, for a total of $178.50 worth of espresso and cappuccino. How many cups of each were sold?

<table>
<thead>
<tr>
<th>Coffee</th>
<th>Cost per Cup ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>espresso</td>
<td>2.00</td>
</tr>
<tr>
<td>cappuccino</td>
<td>2.50</td>
</tr>
</tbody>
</table>

25. **BOATING** *The Yankee Clipper* leaves the pier at 9:00 A.M. at 8 knots (nautical miles per hour). A half hour later, *The River Rover* leaves the same pier in the same direction traveling at 10 knots. At what time will *The River Rover* overtake *The Yankee Clipper*?
Read each question. Then fill in the correct answer on the answer document provided by your teacher or on a sheet of paper.

1. Martin’s Car Rental rents cars for $20 per 100 miles driven. How many miles could be driven for $125?
 A 6.25 C 625
 B 100 D 6250

2. Marcus’s telephone company charges $30 per month and $0.05 per minute. How much did it cost him in January if he talked for 120 minutes?
 F $24 G $36 H $60 J $90

3. **GRIDDABLE** Solve the equation.
 \[\frac{1}{2}x + 12 = \frac{3}{4}x - 16 \]

4. Leland’s lawn service charged Mr. Mackenzie $65 to plant a new tree plus $18.50 per hour to mow and fertilize his lawn. The total charge was $157.50. For about how many hours did Leland’s lawn service work on Mr. Mackenzie’s lawn?
 A 4 B 5 C 6 D 8

5. Lauren has $35 to spend on beads for making necklaces. If she spends $15 for string and each bead costs $2.50, solve the inequality \(2.50n + 15 \leq 35 \) to determine how many beads she can buy.
 F more than 14 H more than 8
 G less than 14 J less than 8

6. Margot and Lainy are selling bracelets at the farmers’ market. It costs $25 to rent a booth. They sold each of their bracelets for $15. If the profit was $355, which equation represents the number of bracelets \(n \) they sold?
 A \(355 = 15n - 25 \)
 B \(355 = 25 + 15n \)
 C \(25 = 355 + 15n \)
 D \(355 = (25 + n)15 \)

7. **GRIDDABLE** Brianne makes baby blankets for a baby store. She works on the blankets 30 hours per week. The store pays her $9.50 per hour plus 30% of the profit. If her hourly rate is increased by $0.75 and her commission is raised to 40%, how much will she earn in dollars if a total of $300 in blankets is sold?

8. Maya is selling T-shirts to raise money for the student council. She makes $6.75 for every T-shirt that she sells. If she wants to raise $800 selling the T-shirts, what is a reasonable number of shirts she should sell?
 F 100 G 120 H 500 J 5400

9. **GRIDDABLE** Mr. Hiskey is making a doll-sized model of his house for his daughter. The model is \(\frac{1}{16} \) the size of the actual house. If the door in the model is 6 inches tall, how many inches tall is the actual door on the house?
10. Carter is riding his bicycle. He leaves his house and stops at a park that is 25 miles from his house. After the stop, he continues to ride his bicycle at a constant rate of 18 miles per hour away from his house. Which equation could be used to determine the time in hours \(t \) it will take him to reach a distance of 120 miles from his house?

A 120 = 18\(t \) + 25
B 120 = \(t \)(18 + 25)
C 120 = 18\((t + 25) \)
D 120 = 25\(t \) + 18

11. The amount of water needed to fill a balloon best represents the balloon’s _____.

F volume
G surface area
H circumference
J perimeter

12. The scale factor of two similar triangles is 5:2. The perimeter of the smaller triangle is 108 inches. What is the perimeter of the larger triangle?

A 540 in.
B 270 in.
C 216 in.
D 43.2 in.

13. Bailey estimates that his income has gone up $2000 each year from 1999 to 2005. What additional information is needed to calculate his income in 2005?

F The range of his income from 1999 to 2005.
G His income in 1999.
H How much he thinks his income will go up in the next year.
J The national average income.

14. Rectangle \(WXYZ \) is shown below.

If each dimension of the rectangle is doubled, what is the perimeter of \(WXYZ \)?

A 82 cm
B 100 cm
C 164 cm
D 288 cm

15. Latoya bought 48 one-foot-long sections of fencing. She plans to use the fencing to enclose a rectangular area for a garden.

a. Using \(\ell \) for the length and \(w \) for the width of the garden, write an equation for its perimeter.

b. If the length \(\ell \) in feet and width \(w \) in feet are positive integers, what is the greatest possible area of this garden?

c. If the length and width in feet are positive integers, what is the least possible area of the garden?

d. How do the shapes of the gardens with the greatest and least areas compare?